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The goal of today’s talk is to prove the finiteness property of the automorphism group of
a hyperbolic compact Riemann surface M. The word hyperbolic can be replaced with the
condition that the topological genus of M ¢ is greater or equal than 2. This is because every
such Riemann surface admits a Riemannian metric g of constant —1 Gaussian curvature,
i.e. a hyperbolic structureﬂ Such g will be called a hyperbolic metric. We formulate the
above as the following theorem:

Theorem 1. Let M be a compact Riemann surface of genus g > 2, then the automorphism
group Aut(M), which is group of biholomorphisms, or equivalently, the group of orientation
preserving conformal automorphisms, is finite.

This is a quite interesting phenomenon, since this result is false for Riemann surfaces of
elliptic or parabolic type.

Example 0.1. Suppose M is a compact Riemann surface of genus g = 0, then M is
biholomorphic to CPL. Then Aut(CP') = PSLy(C), which is not finite. In this case, the
Gaussian curvature K of M is positive.

Example 0.2. Suppose M is a compact Riemann surface of genus g = 1, then M is
biholomorphic to C/A, for some lattice A. Its automorphisms are in general translations,
and square lattice and hexagonal lattice have addition symmetries from rotation by 90° and
60°. In particular Aut(M) is infinite as well. In this case, the Gaussian curvature K of M
18 zero.

We shall present two proofs of theorem [I] one differential geometric, and the other topo-
logical. The second proof will only be sketched.

Recall that g > 2 implies that M has a hyperbolic metric g. We shall assume the fact
that Aut(M) = Isom™ (M, g). Let V be the Levi-Civita connection, and R the Riemannian
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curvature tensor. Locally, the Ricci curvature tensor Ric is defined as

Ricy(X,Y) :=> R(X,e;e;,Y),

where p € M, X € T,M, and {e;} is a local orthonormal frame of the tangent bundle. From
the symmetries of the Riemann curvature tensor, we see that the Ricci tensor is symmetric.
We set Ric,(X) := Ricy(X, X). In the case where M is a surface, we have

Ricy(X) = K(p)g(X, X),

where K (p) is a Gaussian curvature at p. Hence negative Gaussian curvature is equivalent
to negative Ricci curvature in the case of surfaces. Therefore theoreny] follows from the
following more general theorem due to Bochner[I]:

Theorem 2 (Bochner). Let (M",g) be a compact Riemannian manifold of dimension n,
with negative definite Ricci curvature everywhere, then the isometry group of M is finite.

Proof. 1t is well known that the isometry group of a Riemannian manifold has a Lie group
structure with respect to the compact open topology in M, and if M is compact, so is
Isom(M)(cf.[2]). Thus it suffices to show that the connected component of Isom(M) which
contains the identity, Isom®(M), is just the identity. Suppose not, then there exists a smooth
one parameter family of isometries p; with pg = id. Then £(t) := % is a Killing vector
field on M. Therefore L¢g = 0, where L is the Lie derivative along £. In local coordinates

(U, x"), we can rewrite this as:

gz'j,kfk + gkjé’,’? + giké,’} =0,Y4,4,k (1)

where g;; 1, = gii,f ,and & = 5’“%, §’ki = ggz. At the center p of a geodesic normal neighbor-

hood, we have
9i56(p) = 0,T%;(p) = 0.

Therefore, at p, (1) becomes

&+€=0,Yi,j. (2)
Using the metric g, we have an isomorphism ® : TM — T*M, v + g(v,-). If v = v! aii

locally, then v” := g(v,-) = gijdz’(v)da? = gijv'da?. Setting (v, w) = (v°,w’), ® is then an

isometry. It is easy to check that (2) is equivalent to

(V€)= —~(VE)ji, (3)
ie.

(Vi€)i = —(Vi€);, (4)
abbreviating V; as V_s . Here we use the same notation V to denote the induced connection

ox®

on the cotangent bundle. Now consider the smooth function f(q) := [£(q)|? = |€"(¢)|?, the



norm squared of £ at ¢ € M. Since M is compact, f achieves its maximum at some point,
say p. Fix a geodesic normal neighborhood (U, x%) centered at p, we have:

Zl(@) 2(p) <

= %(Vlfb, €b>(p) <0 (metric compatibility)

= [Vi&[*(p) + (ViVit". &) (p) <0

— Vi’ (p) + (ViVi&); - §(p) <0 (9i5(P) = 645)

— Vi€’ |*(p) + (Vi€") i - §(p) <0 (T%(p) = 0)

= Vi€ *(p) = (V€)1 §(p) <0 (by (4))

= [Vi&[*(p) = (ViV;€)i - (p) <0 (T (p) = 0)

= [Vi&[*(p) = (V;Vi€)i - €(p) — (Riy€)i - &(p) < ([ 525) = 0)

= [Vi&*(p) = (Vi€)ij - § () — Rijuit” - € (p) <0 (935(p) = i)

= [Vi€’[*(p) — 0 — Ric(&,) <0

= [Vi&’[*(p) < Ric(§,) <0,

= £&(p) =0 (Ricci tensor is negative definite)

= (=0 (p is the length maximum)
Thus there exists no nontrivial Killing field on M, and Isom®(M) = {id}. O

Now we sketch the second proof. Let Q!(M) be the space of holomorphic one forms on
M, which are forms that locally looks like f(z)dz, where f is a holomorphic function. Note
that every holomorphic one form is closed, since locally

d(f(z)dz) = gﬁdz Ndz + gfdz ANdz =10

due to holomorphicity. Moreover, no holomorphic one form is exact, suppose otherwise, then
there exists w € Q1(M) such that w = df, where f : M — C is necessarily a holomorphic
function. But since M is compact, f must be constant, hence w = 0. With these two
observations, we have an injection:

Q' (M) — HY(X,C).

Let Q' (M) be the space of antiholomorphic one forms, that locally looks like f(z)dz, where
f is a holomorphic function. Then conjugation defines a conjugate linear isomorphism from
QL(M) to Q' (M), and Q1(M) N Q' (M) = {0}. In fact, more is true:



Theorem 3 (Hodge theorem for Riemann surfaces). H'(M,C) = QY(M) @ ﬁl(M) Note
that H*(X,C) is a complex vector space of complex dimension 2g, and can be viewed as
HY(X,R)®iH'(X,R). g is the genus of M.

We shall assume this result. Suppose ¢ € Aut(M), then ¢ acts on Q! (M) isomorphically
via pull-back. Therefore we have

F: Aut(M) — Aut(Q'(M)) =2 GL,(C) D U(g).

Fact 1: The image of F' actually lands in the compact group U(g).
Note that ¢ will also induce an isomorphism on integral homology H'(M,Z). Hence we
have a map

@ : Aut(X) — Aut(H'(M,Z)) = GLay(Z).

Fact 2: ¢ is an injection.
Therefore Aut(M) is a discrete subgroup of a compact group, hence must be finite.

Remark. There is another way of proving theoren{l] I will just briefly talk about the idea.
Again we assume there exists a smooth one parameter family of isometries {pi}, and we
get the Killing field £(t) as usual. Then one can show that & has isolated zeros on M, hence
finite since M is compact. Then the Hopf index theorem gives:

D g = x(M) <0,
p

where the sum is taken over points p such that £(p) = 0. For such p, ¢ fizes p. We can
lift o to a one parameter family of isometries @y on the upper half plane H, and each ¢y
has a fived point. Without loss of generality, we can assume @, fizes i, hence must be an
element of SO(2). Therefore the index of & at that point p must have index 1 since elements
of SO(2) have determinant 1. This implies that

Z ip€ = number of fized points > 0,
P

unless € = 0.
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