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1 Introduction: 3 minutes

• Welcome to my defense presentation. The title of my talk today is: Inverse Mean

Curvature Vector Flows. What I did in my thesis is that I showed that there exist

infinitely many examples of spacetimes that have smooth inverse mean curvature flow

solutions that exist for all time. Prior to our work, solutions to such flow were only

known to exist in spherical symmetric and static spacetimes. The technique used in

our construction may be important to prove the Spacetime Penrose Conjecture.

• This talk consists of four part: First, I will introduce some of the background

material including inverse mean curvature vector flow and the Penrose conjecture;

Second, I will discuss how inverse mean curvature vector flow always works in spherical

symmetry; After that, I will get to my work on constructing non-spherically symmetric
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spacetimes that have inverse mean curvature vector flow solutions; Lastly, I will

statement some open problems.

2 Motivation: 18 minutes

2.1 Riemannian Penrose Inequality

General relativity is the leading theory in describing the large scale structure of the

universe. It has achieved many success including predictions of the big bang and

black holes. However, the notion of mass of a given region, or quasi-local mass, as

well as its relationships with the global mass of our spacetime, are still not very well

understood. (Draw the following illustration.)

pointwise energy density ← local mass of a region → global mass of the spacetime.

(Narrate: The pointwise energy density and the global mass of a spacetime are two

relatively well understood quantities. However, the local mass that fits in the middle is

still not well understood.)

Given a spacetime N that admits a totally geodesic (zero second fundamental

form), asymptotically flat spacelike hypersurface M , the Riemannian Penrose conjec-

ture states that:

Theorem 2.1 (Riemannian Penrose Inequality). Draw picture first and then narrate:

Figure 1: Totally geodesic spacelike slice with outermost minimal surface boundaries

Given a complete asymptotically flat Riemannian manifold (M3, g) with nonnega-

tive scalar curvature and a compact outermost minimal (i.e. not enclosed by a surface

with equal of less area) surface Σ2, then

mADM ≥
√
|Σ|
16π

, (2.1)
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where mADM is the ADM mass of M (named after Arnowitt, Deser and Misner), and

|Σ| is the area of Σ.

Σ can be viewed as the apparent horizon of black holes. Intuitively, this

inequality is simply saying that the total mass of the manifold M is bounded

from below by the mass contributed by the black holes. This inequality was first

proved by Huisken-Ilmanen using inverse mean curvature flow in the case of a single

blackhole, and then by H. Bray for arbitrary number of blackholes using conformal

flow of metrics. The zero blackhole case is also known as the Positive Mass Theorem,

which was first proved by Schoen and Yau using minimal surface techiques, and later

by Witten using spinors.

2.2 Inverse Mean Curvature Flow

Huisken and Ilmanen’s approach was based on the Geroch, Jang/Wald monotonicity

formula of Hawking mass under inverse mean curvature flow.

Definition 2.1. Given a closed surface Σ in M . The inverse mean curvature flow of

Σ is a smooth family of surfaces F : Σ× [0, T ] −→M , such that

∂F

∂t
=

νt
Ht

, t ∈ [0, T ], (x, t) ∈ Σt := F (Σ, t), (2.2)

(Draw inverse mean curvature vector flow here after this equation.) where νt is the

outward unit normal to Σt, and Ht is the scalar mean curvature of Σt in M .

Geroch, Jang/Wald discovered a connection between smooth inverse mean

curvature flow and a quasi-local mass called Hawking mass. The Hawking mass

of a closed surface Σ is defined to be:

mH(Σ) =

√
|Σ|
16π

(
1− 1

16π

∫
Σ

(HΣ)2 dAΣ

)
, (2.3)

• If Σ is outermost minimal, then its Hawking mass equals to
√
|Σ|
16π

. Notice that

this is the right hand side of the Riemannian Penrose inequality (2.1).

• Geroch, Jang/Wald showed that if {Σt} is a smooth solution to inverse mean

curvature flow, then the Hawking mass monotonically non-decreasing (Here, simply

write mH(Σt) increases).

• Let Sr(0) be coordinate sphere of radius r in an asymptotically flat coordinate

chart of M . Huisken and Ilmanen showed that:

lim
r→∞

mH(Sr) = mADM(M).

• Combining the above, we have that if {Σt} is a smooth solution to inverse mean

curvature flow, and Σt approaches to large coordinate spheres near infinity sufficiently
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fast, then:

mADM(M) = lim
t→∞

mH(Σt) ≥ mH(Σ) =

√
|Σ|
16π

,

which proves the Riemannian Penrose conjecture.

• However, the inverse mean curvature flow is undefined when HΣ = 0. Thus, we

don’t even know how to start the flow if the initial surface is minimal. Huisken

and Ilmanen defined a weak notion of solutions to inverse mean curvature flow via

a level set formulation. Roughly speaking, the flow surfaces will “jump” when the

mean curvature is about to be zero. Huisken and Ilmanen showed is that the Hawking

mass satisfies all the key properties of the smooth case, in particular it is non-

decreasing during jumps as well. Using this, they proved the Riemannian Penrose

conjecture in the case of a single black hole, i.e. connected outmost minimal boundary.

This is a wonderful example of solving a differential geometric problem using analysis.

• Conclusion: the inverse mean curvature flow naturally bridges the local mass

(Hawking mass) of a outermost minimal surface with the global mass (ADM) mass

of a hypersurface in a spacetime: (Draw the following illstruation.)

Hawking mass of apparent horizon of BHs
IMCF−−−−→ ADM mass of hypersurface in spacetime.

2.3 Inverse Mean Curvature Vector Flow

• Up until this point assumes that the spacetime has a spacelike hypersurface with

zero second fundamental form, that is, a totally geodesic a slice. However, a space-

time generally has no such totally geodesic hypersurface, since the second fundamental

form has six components, and a hypersurface only has one degree of freedom. Thus, it

is desirable to show that the total mass of the spacetime is bounded by the mass con-

tributed by the blackholes without this assumption. This is the Spacetime Penrose

Conjecture, which is still open today.

A possible candidate for proving this conjecture is the codimension-two analogue

of inverse mean curvature flow, called the inverse mean curvature vector flow. (Write

down the IMCVF equation here:)

Definition 2.2. Given a closed surface Σ in a spacetime N . An inverse mean cur-

vature vector flow of Σ is a smooth family of surfaces F : Σ × [0, T ] −→ N such

that:
∂F

∂s
= ~Is := −

~Hs

〈 ~Hs, ~Hs〉
. (2.4)

where ~Hs is the mean curvature vector of Σs := F (Σ, s). ~Is defined above is called the

inverse mean curvature vector.

There are two problems with this flow:

(1) First, inverse mean curvature vector flow might not have solutions given

any initial surface. As Huisken and Ilmanen pointed out, the inverse mean curvature
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vector flow equation (2.4) is a 2× 2 forward-backward parabolic system of equations.

Forward parabolic equations are nice and smooths things out, but the problem is that

backward parabolic equations do not have a general existence theory. For in-

stance, the reverse heat flow equation is backward parabolic, and singularities usually

develop instantaneously given certain initial conditions. However, the reverse heat

flow exists for time t > 0 if we first perform the heat flow, which is forward parabolic,

for time t and then flow backwards.

(2) Second, for some initial surface, even the inverse mean curvature vector

flow exist, the Hawking mass of the initial surface won’t give us a lower bound

on the total mass of the spacetime simply because the former is too large. To

illustrate this, take a t = constant slice in the Minkowski spacetime. The round sphere

in that slice has zero Hawking mass (Prepare for question here: why the Hawking mass

is zero?). Spacial perturbations will decrease the Hawking mass making it negative,

whereas timelike perturbations will increase the Hawking mass making it positive.

During inverse mean curvature vector flow, the spacial “wiggles” will smooth out due

to the parabolic nature of the flow. However, timelike “wiggles” will get amplified

since the flow is reverse parabolic in the timelike directions. With these surfaces

with positive Hawking mass, inverse mean curvature vector flow will not provide a

lower bound for the ADM mass of Minkowski space (ADM mass of a spacetime is also

defined), which is zero.

• However, these two problems seem to solve each other because they are both

suggesting that inverse mean curvature vector flow exists only when the “right” initial

surface is given. On the other hand, inverse mean curvature vector flow always works

in spherically symmetric spacetimes. It is thus important to understand the geometry

of spherical symmetry.

3 Spherically Symmetric Spacetimes: 10 minutes

Roughly speaking, a spacetime is said to be spherically symmetric if its isometry

group contains a subgroup that is isomorphic to the rotation group SO(3). Given

a spherically symmetric spacetime (N4, g) satisfying the dominant energy condition

that admits a coordinate chart {t, r, θ, φ}, such that g takes the form: (Keep this

coordinate representation.)

g =


t r θ φ

t −v2(t, r) 0 0 0

r 0 u2(t, r) 0 0

θ 0 0 r2 0

φ 0 0 0 r2 sin2 θ

 (3.1)

where u and v are smooth functions of t and r only. Roughly speaking, every spheri-

cally symmetric spacetimes outside blackholes can be expressed this way. For instance,
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the Minkowski spacetime (R3,1,−dt2 + dr2 + r2dΩ2) and the Schwarzschild spacetime

(R4\{0},−
(
1− 2m

r

)
dt2 +

(
1− 2m

r

)−1
dr2 + r2dΩ2).

• Upshot: Within each t = constant slice, smooth inverse mean curvature vector

flow of coordinate sphere St,r exists for all time. To see this, we can compute that:

~Ht,r = −2

r

1

u2
∂r. (3.2)

So the inverse mean curvature vector is:

~It,r = −
~Ht,r

〈 ~Ht,r, ~Ht,r〉
=

2
r

1
u2
∂r

〈−2
r

1
u2
∂r,−2

r
1
u2
∂r〉

=
2
r

1
u2
∂r

4
r2

1
u4
u2

=
r

2
∂r. (3.3)

Therefore, inverse mean curvature vector flow of St,r is a reparametrization of

radial flow, and hence is smooth and exits for all time. Moreover, the Hawking mass

is monotone if the spacetime satisfies the dominant energy condition. Recall that:

mH(St,r) =

√
|St,r|
16π

(
1− 1

16π

∫
St,r

g( ~Ht,r, ~Ht,r) dAt,r

)
, (3.4)

where dAt,r is the area form of St,r, and |St,r| is the area of St,r. Note that (Simply

state this during the presentation by the side) |St,r| = 4πr2 since the metric on St,r is

the standard round metric on two-spheres with radius r.

Plug the mean curvature vector of St,r (3.2) into the Hawking mass equation (3.4),

we get:

mH(St,r) =

√
4πr2

16π

(
1− 1

16π

∫
St,r

g

(
−2

r

1

u2
∂r,−

2

r

1

u2
∂r

)
dAt,r

)
(This line follows immediately from Equation (3.4) above)

=
r

2

(
1− 1

16π

∫
St,r

4

r2

1

u4
g(∂r, ∂r) dAt,r

)
(Skip this step)

=
r

2

(
1− 1

16π

∫ 2π

0

∫ π

0

4

r2

1

u2
r2sinθ dθ dφ

)
(Skip this step)

=
r

2

(
1− 1

4π

1

u2
4π

)
(Skip this step)

=
r

2

(
1− 1

u2

)
. (Discuss the Hawking mass of sphere in Minkowski space)

By Equation (3.3), the variation of the Hawking mass of St,r along inverse mean

curvature vector flow is given by:

~It,r(mH(St,r)) =
r

2

∂mH(St,r)

∂r
=
r

2

[
1

2

(
1− 1

u2

)
+ r

u,r
u3

]
=

r3

4v2
G(

∂

∂t
,
∂

∂t
) ≥ 0.
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where G is the Einstein curvature tensor of (N4, g), and the last inequality follows

from the dominant energy condition. All the detailed computations can be found in

Proposition 2.2 in my thesis.

• Conclusion: A spherically symmetric spacetime (N4, g) that admit such a co-

ordinate chart can then be foliated by t = constant spacelike hyperplanes, and each

hyperplane can be foliated by smooth inverse mean curvature vector flow spheres (see

Figure 2). (Draw this slice bigger, and only draw three spheres with large space between

them.)

Figure 2: IMCVF of coordinate spheres St,r in spherically symmetric spacetime (3.1).

• Thesis Problem Statement: In spherically symmetric spacetimes, the “right

” initial surfaces are spherically symmetric spheres. Had we chosen any other

spheres, inverse mean curvature vector flow would not exist. Is this situation

generic in the sense that given any spacetime we can find the “right” initial surface?

(Write the next sentence down) Can we find non-spherically symmetric spacetimes that

admit smooth solutions to inverse mean curvature vector flow as well?

4 Now here is what I did: Spacetimes that Ad-

mit Inverse Mean Curvature Vector Flow Coor-

dinate Chart: 22 minutes

Sine we want to generalize the spherically symmetric case, in particular the

special double foliation, let’s first assume that a spacetime admits such special

double foliation, and see what kind of topological and geometric constraints this

double foliation puts on the spacetime.

Suppose a spacetime (N4, g) admits the following special foliation: N is foliated by

spacelike hyperplanes, and then within each hyperplane, smooth IMCVF of spheres
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exists and foliates the entire hyperplane. Consequently, the mean curvature vector

of the flow spheres are tangential to the hyperplane. Notice that this foliation

puts restrictions on the topology of N , as N has to be topologically equivalent to

(R3\B1)× R, where B1 is the closed unit ball in R3.

Suppose (N4, g) admits such a special foliation. We can use this to define coor-

dinates that generalize the spherically symmetric coordinates. (Talk while you draw

Figure 3.)

• We define the t-coordinate by setting each hyperplane as t = constant, thus the

t-coordinate tells us which hyperplane we are on.

• For each IMCVF sphere, define A = 4πr2, where A is the area of that sphere.

This defines a very natural r-coordinate. Since IMCVF is area expanding, the r-

coordinate is well-defined. For simplicity we assume that r ≥ 1, i.e. the initial

spheres on each hyperplane have area 4π.

• Then define (θ, φ)-coordinates on an initial sphere, 0 < θ < π and 0 < φ < 2π,

such that the area form satisfies

dA0 =
A(0)

4π
sin θdθdφ = sin θdθdφ, (4.1)

where A(0) is the area of the initial sphere. Extend (θ, φ) by setting them to be con-

stant along perpendicular directions of the initial sphere, such that (θ, φ) coordinates

are defined for each sphere. By the extension, ∂
∂r

will be perpendicular to each sphere.

It can be shown, using the first variation of area, that the equation for the area form

(4.1) will be preserved: dAr = A(r)
4π

sin θdθdφ (Skip this in the talk. Explain if someone

asks.)∗. (At this point, Figure 3 should be drawn.)

• Conclusion: If a spacetime (N4, g) admits the above special double foliation,

(Write this down and use⇒. Save head room for “Theorem” once the converse if proved.)

then there exists a coordinate chart {t, r, θ, φ} of N , such that in this coordinate chart

the metric has the form (Do not erase):

g =


t r θ φ

t −v2 d e f

r d u2 0 0

θ e 0 a c

φ f 0 c b

 (4.2)

where u, v, a, b, c, d, e, f are smooth functions on N , and the following four conditions

∗In smooth IMCVF, d
ds (dAs) = −〈~Is, ~Hs〉dAs = dAs, where dAs is the area form of Σs. The

solution to this equation is dAs = esdA0. The area of Σs is thus given by A(s) = A(0)es = 4πr2, by

the definition of the r-coordinate. Thus es A(0)
4π = r2. Therefore the area form in the r parameter is

dAr = esdA0 = es A(0)
4π sin θdθdφ = r2 sin θdθdφ = A(r)

4π sin θdθdφ.
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Figure 3: Special foliation of a spacetime (N4, g): first foliated by hyperplanes, then
each hyperplane is foliated by IMCVF of spheres. This generalizes the spherically
symmetric case in Figure 2.

are satisfied (Do not erase these four conditions):

(1) 〈 ∂
∂r
,
∂

∂θ
〉 = 0; (4.3)

(2) 〈 ∂
∂r
,
∂

∂φ
〉 = 0; (4.4)

(3) dAt,r = r2 sin θdθdφ (i.e. ab− c2 = r4 sin2 θ); (4.5)

(4) ~Ht,r is tangential to the t = constant hyperplane; (4.6)

where dAt,r and ~Ht,r are the area form and the mean curvature vector of the coordinate

sphere St,r, respectively.

• It can be shown that the converse is also true (Put the word “Theorem” on top

of the above conclusion, and then write ⇐. The following part is to be said): if the

spacetime metric admits a coordinate chart satisfying these four conditions, then the

spacetime admits the special double foliation.

Proof. Given a coordinate chart {t, r, θ, φ} of (N, g) such that the g satisfies the four

conditions, N is then foliated by t = constant slices which are spacelike since the

metric has the form (4.2). For any t = constant slice, the coordinate spheres {St,r}
are solutions of a normal flow since 〈 ∂

∂r
, ∂
∂θ
〉 = 〈 ∂

∂r
, ∂
∂φ
〉 = 0. We reparametrize the
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flow by setting s := C + 2 ln r, where C is a positive constant. Then

d

dr
(dA) =

d

ds
(dA)

ds

dr
=

2

r

d

ds
(dA). (4.7)

On the other hand by condition (3)

d

dr
(dA) =

d

dr
(r2 sin θdθdφ) = 2r sin θdθdφ =

2

r
dA. (4.8)

Combing the two equations above, we have d
ds

(dA) = dA. Thus, by the first variation

of area formula, {St,r} when reparameterized by r2 = Ces, are smooth solutions to

inverse mean curvature flow. By condition (4), the mean curvature vector of St,r stays

tangential to the slice, therefore {St,r} with the above reparameterization are smooth

solutions to inverse mean curvature vector flow.

Definition 4.1 (IMCVF Coordinate Chart). If a spacetime (N4, g) admits a coor-

dinate chart {t, r, θ, φ} such that the four conditions (4.3), (4.4), (4.5) and (4.6)

are satisfied, then {t, r, θ, φ} is called an IMCVF coordinate chart, and N is called a

spacetime that admits an IMCVF coordinate chart.

Thus, finding spacetimes that have inverse mean curvature vector solutions

is equivalent to finding spacetimes that admit inverse mean curvature vector

flow coordinate charts.

Many spherically symmetric spacetimes admit an IMCVF coordinate chart (e.g.

coordinate chart (3.1) with d = e = f = c = 0, and a = r2, b = r2 sin2 θ and radial

mean curvature vector by Equation (3.2)).

• Problem Statement: Given an arbitrary spacetime (N4, g), it is generally im-

possible to reparametrize it with an IMCVF coordinate chart (e.g. a spacetime that

is not topologically equivalent to (R3\B1) × R). However, is it possible to construct

a spacetime that admits such a coordinate chart?

Proposition 4.1 (Existence of Spacetimes That Admit an IMCVF Coordinate Chart).

Let U := (R3\B1) × R ⊂ R4. There exist infinitely many spacetime metrics of the

form of (4.2) that admits an IMCVF coordinate chart.

Combining the above we have:

Theorem 4.1 (Main Theorem). There exist infinitely many non-spherically sym-

metric spacetimes that admit IMCVF coordinate charts. Given such a spacetime U

with an IMCVF coordinate chart (t, r, θ, φ) and the constructed spacetime metric g,

the coordinate spheres St,r contained in each t = constant slice, when reparameterized

by r2 = es, are solutions to the smooth IMCVF equation.

• Construction of Spacetime Metrics that Admit IMCVF Coordinate Charts: Let

U = (R3\B1)×R. It is easy to construct a spacetime metric g that admits a coordi-

nate chart {t, r, θ, φ} that satisfies condition (4.3) and (4.4). Simply define g to have
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the form (4.2) (Point to the coordinate chart). Choosing two of the three variables a, b

and c such that ab− c2 = r4 sin2 θ satisfies condition (4.5).

The fourth condition requires ~Ht,r, the mean curvature vector field of St,r, to be

tangential to the t = constant slice. This is equivalent to requiring ~Ht,r to be parallel

to ∂
∂r

(Keep this on the board along with ab − c2 = r4 sin2 θ). The normal bundle of

St,r has the following structure:

Figure 4: Normal bundle of coordinate sphere St,r.

where er = 1
u
∂
∂r

, outward-spacelike unit normal, and en the complementary normal

vector perpendicular to er. Therefore ~Ht,r can be written as

~Ht,r = 〈 ~Ht,r, er〉er − 〈 ~Ht,r, en〉en. (4.9)

Thus, ~Ht,r parallel to ∂
∂r

(Immediately write below it) is equivalent to (Use ⇐⇒)

〈 ~Ht,r, en〉 = 0. This equation can be computed out explicitly (see Section 4.3 of my

thesis), and it is:

0 = 〈 ~Ht,r, en〉

=
1

2|g|

{
u2(ab− c2)[2be,θ − 2ce,φ − 2cf,θ + 2af,φ]

+ d(ab− c2)(ab− c2),r + u2(cf − be)[a,θb− 2a,φc+ 2ac,φ − ab,θ]

+ u2(ce− af)[2bc,θ − a,φb− 2b,θc+ ab,φ]
}

What’s amazing about this equation is that it is zeroth order in d. Thus we can

choose all the other metric components (6 in total) (Point back to the metric (4.2) and
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identify the 6 free variables) and solve for d explicitly:

d = − u2

4r3 sin2 θ

{
[2be,θ − 2ce,φ − 2cf,θ + 2af,φ] +

cf − be
r4 sin2 θ

[a,θb− 2a,φc+ 2ac,φ − ab,θ]

+
ce− af
r4 sin2 θ

[2bc,θ − a,φb− 2b,θc+ ab,φ]
}
. (4.10)

Therefore all four conditions (Point to the four conditions which should be kept on

the board) can be solved with infinitely many solutions.

• Notice that (Point to Equation (4.10)) if all other variables are smooth, d will be

also be smooth except possibly when sin θ = 0, since d is not defined by our formula

there. Thus we have two coordinate singularities at the north and the south pole.

d can be extended smoothly across these coordinate singularities if we choose c, e, f

to be zero in a neighborhood of the north and south pole. This can be verified by

looking at the explicit formula of d on page 51, Equation (4.2.28). One could study

more general asymptotic conditions for d to be smooth and bounded as θ approaches

0 or π, but we choose not to discuss it further here.

• We have in total six degrees of freedom in constructing spacetime metrics with

inverse mean curvature vector flow coordinates. Six is in fact the maximum possible

degrees of freedom we can hope for, since a general reparameterization of a spacetime

has six degrees of freedom. This greatly generalize the spherically symmetric case in

two ways (Point to the spherically symmetric metric (3.1)):

(1) These six free variables do not need to be spherically symmetric: instead, they

can depend on t, r, θ and φ;

(2) d, e, f and c do not need to be zero.

5 Steering Parameter and More Ways of Produc-

ing IMCVF Solutions: 3 minutes

• Given a spacetime (N4, g) and a spacelike hypersurface M , Given a closed surface

Σ in M satisfying some natural expansion conditions (Draw Figure 5).

Figure 5: IMCVF steering setup
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We showed that one can change the one component of the spacetime metric,

called a steering, and the mean curvature vector of Σ will be tangential to M in

the steered metric. This can be used to generate more solutions of inverse mean

curvature vector flow: Consider a smooth solution to the inverse mean curvature flow

(Draw a foliation of IMCF in M), we can then smoothly adjust the spacetime metric

such that the mean curvature vector of each flow surface becomes tangential to M .

These steered surfaces are then solutions to inverse mean curvature vector flow, since

the area expanding condition is already satisfied, and now the mean curvature vectors

are tangential to a spacelike slice.

6 Conclusions and Open Problems: 4 minutes

Problem 1. We have constructed many examples of spacetimes that admit smooth

inverse mean curvature vector flow solutions. These examples suggest that given a

spacetime, it might be possible in general to find the “right” initial surface such that

the inverse mean curvature vector flow exists.

Going to the big picture of relating local and global notions of mass, it is still

unknown that:

Problem 2. (You can simply state this without writing it down, simple draw the local

to global mass picture again) Given a spacetime that is sufficiently asymptotically flat,

e.g. Schwarzschild outside a compact set, then does the Hawking of inverse mean

curvature vector flow surfaces approach the total mass of the spacetime?

A natural next step is to consider the following questions:

Problem 3. Given a spherically symmetric spacetime that admits an inverse mean

curvature vector flow coordinate chart. Consider a perturbation of the spacetime met-

ric. Does the perturbed metric admit an inverse mean curvature vector flow coordinate

chart as well?

We conjecture that this is always the case for some Minkowski spacetimes:

Conjecture 6.1. Given Minkowski space with IMCVF coordinate chart that can be

smoothly extended to the boundary, consider a perturbation of the spacetime metric.

The resulting spacetime still admits IMCVF solutions (in a single spacelike hypersur-

face) that exist for all time.
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