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Abstract

Methods We present in this paper a novel method, SW1PerS, for quantifying periodicity in time series
data. The measurement is performed directly, without presupposing a particular shape or pattern, by
evaluating the circularity of a high-dimensional representation of the signal. SW1PerS is compared to
other algorithms using synthetic data and performance is quantified under varying noise levels, sampling
densities, and signal shapes. Results on biological data are also analyzed and compared; this data includes
different periodic processes from various organisms: the cell and metabolic cycles in S. cerevisiae, and
the circadian rhythms in M. musculus.

Results On the task of periodic/not-periodic classification, on synthetic data, SW1PerS performs on par with
successful methods in periodicity detection. Moreover, it outperforms Lomb-Scargle and JTK-cycle in
the high-noise/low-sampling range. SW1PerS is shown to be the most shape-agnostic of the evaluated
methods, and the only one to consistently classify damped signals as highly periodic. On biological data,
and for several experiments, the lists of top 10% genes ranked with SW1PerS recover up to 67% of
those generated with other popular algorithms. Moreover, lists of genes which are highly-ranked only by
SW1PerS contain non-cosine patterns (e.g. ECM33, CDC9, SAM1,2 and MSH6 in the Yeast metabolic
cycle data of Tu et al. (2005)) which are highly periodic. In the Yeast cell cycle data SW1PerS identifies
genes not preferred by other algorithms, not previously reported in Orlando et al. (2008); Spellman
et al. (1998), but found in other experiments such as the universal growth rate response of Slavov and
Botstein (2011). These genes are BOP3, CDC10, YIL108W, YER034W, MLP1, PAC2 and RTT101.
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1 Persistent Homology of Sliding Window Point-Clouds

The problem of estimating topological properties from a geometric object X given a finite sample X, has received
wide attention in the computational topology literature. One of the most successful strategies emerging from
these studies is the application of persistent homology to point clouds.

Intuitively, homology is an algebraic way of measuring shape invariants of continuous spaces; these invariants
include number of connected components, holes, voids, and their higher dimensional analogs. Persistent homol-
ogy, in turn, is an adaptation of these continuous invariants to discrete sets of points. Let us illustrate how it
works. If we consider, for instance, the sample in figure S1 then it is apparent it evokes an ellipsoidal shape.

Figure S1: Eight points on the plane, sampled with noise from an ellipse.

The way we capture this pattern is by fattening the points in order to blur the gaps between them. Formally, we
fix a real number ε > 0 and consider the region covered by disks1 of radius ε centered at the sample points. The
resulting regions for two choices of ε can be seen in figure S2. The one pictured on the right has what is called a
nontrivial 1-homological feature: for the larger radius it is possible to draw a closed curve lying entirely inside the
disks, so that one cannot continuously deform (shrink) it to a point without either tearing the curve or leaving

1For point clouds in Rn one uses closed balls Bε(x) = {y ∈ Rn : ‖x− y‖ ≤ ε}.
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Figure S2: Coverings with disks of radius ε (left) and ε′ (right), ε < ε′, centered at the sample points.

the region. The covering on the left, on the other hand, does not have this property. Hence there exists a choice
of radius, between ε and ε′, where the nontrivial 1-homological feature appears for the first time. We denote this
value by b and call it the feature’s birth time. Moreover, if we continue to increase the radius, then eventually
the union of disks will cover the “hole” in the middle making the 1-homology feature trivial. That is, it will be
possible to continuously shrink the aforementioned curve to a point while staying inside the covered region. Let
d be the radius where this first occurs, and let us refer to it as the feature’s death time. The persistence of
a homological feature, defined as d − b, measures both its prominence and the level of confidence on whether
it captures a topological property of the underlying continuous space. For a general sliding window point cloud
X ⊂ RM+1 there will be several 1-homological features, corresponding to the different holes, being born and
dying at different times. We compute their persistence and use the largest as a measure of circularity of X, and
hence of periodicity of f .

One characteristic of 1-dimensional persistent homology, as described here, is that it measures not only the
circularity of a point cloud but also its roundness. For instance, dominant 1-homological features from (planar)
ellipsoidal shapes have smaller persistence than that of a circular pattern, when the length of the underlying curve
is kept constant. This is the case because for ellipses largest persistence is associated with minor axes, while for
circles it is a measure of diameter. As described in (Perea and Harer, 2014), the choice of window size w provides
a way of accounting for this bias: when w approaches the length of the period, the sliding window point cloud is
as round as it can be. In particular, if f satisfies the identity f

(
t+ 2π

L

)
= f(t) for some L ∈ N and all t, i.e. f

is L-periodic, then its L-periodicity is best captured by its sliding window point cloud when

w =

(
M

M + 1

)
2π

L
(1)

The embedding dimension M +1, on the other hand, determines the accuracy with which the snippets from f
are captured by their discretizations. Indeed, complicated patterns require larger embedding dimensions in order
to be faithfully represented. The Shannon-Nyquist sampling theorem (Shannon, 1949) provides a guide for making
this choice. Let us assume we have a time series f(t1), . . . , f(tS) from evaluating f at the evenly spaced time
points 0 ≤ t1 < t2 < · · · < tS ≤ 2π. It follows that if f is L-periodic and the window size is chosen as in equation
1, then within any window of such length there should be around S

L observations. The Shannon-Nyquist sampling

theorem implies that with this number of time points one can be sure to capture at most 1
2

(
S
L − 1

)
harmonics

from the windowed snippet. Combining this with the Structure Theorems from (Perea and Harer, 2014), we get
that choosing

M + 1 ≥ S

L
(2)

guarantees that there is no loss of information in going from the Whittaker-Shannon reconstruction of f , to the
sliding window point cloud. In practice we use this number only as a guide and combine it with knowledge on
how intricate the patterns might be. Indeed, cosine-like patterns only require three points per period in order
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to be accurately described, even if the signal has been sampled at a higher temporal resolution. For the results
obtained in this paper we use M = 14 to study the periodicity of times series from signals with various shapes,
L = 2, 3 and sample size S = 13, 17, 25, 42, 50.

Let us now examine the incidence of the finite set T ⊂ [0, 2π −w] used to populate the sliding window point
cloud. The persistence (= death− birth) of a homological feature is prominent when one has both a large death
time, and a prompt birth. Death times are mostly about the diameter of the homological feature, while births are
intimately related to how densely the point cloud has been populated. We say that T is δ-dense in [0, 2π − w],
δ > 0, if for each x ∈ [0, 2π−w] there exists tx ∈ T so that |x− tx| < δ. The main point is that, with some work,
one can show that the birth time of the prominent 1-homological feature of a sliding window point cloud from an
L-periodic function, L ≥ 2, populated with a δ-dense set T , is no larger than δM . For the results presented in
this paper we let T be the set consisting of 200 points evenly spaced between 0 and 2π−w, for w as in equation
1. That is, for M = 14 and L ≥ 2 we expect the birth time to be smaller than or equal to 0.1173.

1.1 The SW1PerS Pipeline

Input:

• Observations f1, f2, . . . , fS sampled at times 0 = t1 < t2 < · · · < tS = 2π. The sampling is not required
to be at equally spaced time points.

• Targeted L-periodicity supplied as a number L ≥ 2; SW1PerS will score how L-periodic the time series is.
L should be the number of periods in the time series, but it does not need to be an integer. This is specially
useful when the periods have different durations; in this case one should choose L so that the window size
(equation 1) is that of the shortest.

Output:

• L-periodicity score. This is a number between 0 and 1, with 0 being perfectly L-periodic.

The Pipeline

1. Preprocess/Denoise time series data. This is an optional step in which we apply Simple Moving Average.

2. Populate sliding window point cloud. We recover a continuous sampling function f : [0, 2π] −→ R by
cubic splining the (denoised) time series. This allows us to deal with uneven sampling, and low temporal
resolution. Given the finite set T ⊂ [0, 2π−w] we populate the sliding point cloud X by evaluating SWM,τf
at each t ∈ T .

3. Postprocess/denoise point cloud. Here we pointwise mean-center and normalize the sliding window point
cloud X ⊂ RM+1. That is, for each x ∈ X we let

x =
x−mean(x)

‖x−mean(x)‖

where mean(x) is the constant (M + 1)-tuple having entries equal to the average of the ones in x. Mean-
centering each snippet has the effect of making the L-periodicity score less sensitive to signal trending.
Normalizing each window, on the other hand, makes SW1PerS amplitude blind and provides a way of
dealing with signal dampening. We let X denote the resulting pointwise mean-centered and normalized
sliding window point cloud. In the event that the periodic pattern presents noticeable variations across the
signal, e.g. due to noise, it is sometimes helpful to apply cloud-level denoising in the form of Mean-Shift
(Comaniciu and Meer, 2002). This has the effect of making the circular pattern close up properly for L = 2,
and of preventing the point cloud from spiraling in/out when L ≥ 3.

4. Calculate score. Let mp(X) denote the persistence of the dominant 1-homological feature underlying X, i.e.
the one with largest persistence, and let (b, d) be a pair attaining it. For this we use the fast implementation
described in the next section. We let the L-periodicity score be

score = 1− dn − bm

3n/2
(3)
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for some choice of positive integers n ≥ m (in this paper we let n = m = 2). Notice that each choice
yields a way of measuring periodicity, and that for n = m and a planar circle of radius 1, as the sampling
density goes to infinity mp is exactly2

√
3.

2 Computing 1-Persistent Homology

2.1 Algorithm

The method described in this paper requires the computation of the 1-dimensional persistence pairing of the
filtered Rips complex of a point cloud. The standard method for doing this can be slow if the point cloud is large,
so we implemented an improvement that reduces the time significantly. We learned the basics of this method
from Vidit Nanda, who has also implemented a version in his software package Perseus (Mischaikow and Nanda,
2013). Our version is different in that we never build the full Rips complex, instead we reduce the complex as we
go along, resulting in less storage and, we believe, a faster process. In any case, the key idea is a combinatorial
version of Morse Theory due to Forman (1998).

Start with a point cloud X ⊂ Rn, and a maximum distance dMax > 0. In the SW1PerS method, the point
cloud is given by first filtering a time series, then using the sliding window to create a point cloud, and then
possibly doing a second filtering of the cloud itself to obtain X. The first filtering is typically based on the kind of
data that one has. We use mean-shift-iteration (Comaniciu and Meer, 2002) for the second filtering, as it tightens
up the circular shape of the point cloud when it is there without creating one when it is not. The maximum
distance dMax limits the length of edges that we consider in order to keep the analysis manageable. The rest of
our description concerns only the computation of 1-dimensional persistence.

Data Structures: We maintain E , a vector of edge classes and L, a vector of lists of the vertices in the lower
link of each vertex. (The lower link is the portion of the link of each vertex that has been constructed up to the
current stage of the algorithm.) The lists in L are kept sorted. Each edge instance from E maintains a label
as positive or negative (all are initially labeled positive). We also maintain Γ, a directed acyclic graph (DAG)
whose nodes are the positive edges and whose edges will be described below. The DAG Γ is used to construct
the persistence matrix M1,2 (as a vector of lists) which gets reduced at the end to compute persistence.

Step 1 - Set Up We read in the point cloud X, and compute the pairwise distance matrix M. Each pair of
vertices gives an edge whose length is the corresponding entry of M. To manage the data, we only store those
edges whose length is at most dMax. Finally, we sort these edges by their length.

Step 2 - Union Find We make a first pass through the edges of E applying the union-find algorithm of Tarjan
(1975) to determine if each edge reduces the number of components of the growing complex or not. This continues
until all edges are considered or the number of components reduces to 1. We change an edge label to negative
if it reduces the number of components in this process. At the end all edges are correctly labeled negative or
positive, where negative edges are the ones that reduce the number of components, and positive ones create a
loop or 1-cycle.

Main Step The main part of the algorithm makes a second pass through the edges of E and builds the matrix
M1,2.

Consider the next edge e from E . Let the vertices of e be v0 and v1.
If the edge e is positive, do the following steps:

• Compute the intersection I of the local lists L[v0] and L[v1]; I is the set of vertices that lie in the lower
link of e. Since the lists of L are kept sorted, this is done in linear time with a mod 2 merge.

• If I is empty, add a row to the matrix M1,2 and add a new leaf vertex to Γ. We then skip the next steps
in the bulleted list.

2This is the answer when using the Rips complex, which is how SW1PerS is implemented.
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• If I is non-empty, compute the edges already added between the vertices in I. Do Union-Find on I using
these edges, and retain a representative of each component. This gives a list {u0, . . . , uk} of representatives
for the components of the lower link of e.

– Process the vertex u0, which we think of as paired with e. Let e0 = v0 ∗ u0 and e1 = v1 ∗ u0 be the
other two edges of the triangle spanned by e and u0.

∗ If e0 and e1 are both negative, then we switch e to negative and DO NOT add a new vertex to Γ.

∗ If either e0, e1, or both are positive, we add a vertex (not a leaf vertex) to Γ and a edge to Γ
from e to ei, if ei is positive, i = 0, 1. Note that the number of outgoing edges from this new
vertex is either 1 or 2.

– Next we process the other vertices of I. Each uj with 0 < j ≤ k creates a triangle e ∗uj and will give
a new column to M1,2 corresponding to its union with the triangle e ∗ u0. The edges of e ∗ uj are e,
v0 ∗ uj and v1 ∗ uj . For each of these which is positive we search Γ down to its leaf vertices to obtain
its base list. Each path to a leaf adds that vertex, but counting is modulo 2 so an even number of
paths means the leaf is not included and an odd number means it is. The resulting list gives the new
column of M1,2. (An alternative to using the DAG Γ is to maintain a list of “below” edges with each
positive edge, and to pass these lists up in the u0 processing step, with the usual mod 2 merge.)

Now, whether e is negative or positive, we add v0 to L[v1] and v0 to L[v1]. These are inserted in their correct
place so that the lists of L remain sorted, which takes linear time.

Reduction Step The process ends by reducing the matrix M1,2 to obtain a matrix M̂1,2, (reduction is described
in Edelsbrunner and Harer (2010)). The 0-D persistence diagram has a point for each negative edge e with
coordinates (0, l(e)), where l denotes length. The 1-D diagram has a point with coordinates (b, d) for each
column c of the matrix M̂1,2 that consists only of 0’s. Here the birth time b is the length of the edge e associated
to c. To find d, look at the row corresponding to e and find it’s first non-zero entry. The death time d is then
the length of the edge associated to the column that contains that entry. If no such row exists, we set d =∞.

2.2 Running Time

Let n be the number of points in X. It takes O(n2) time to compute the pairwise distances. The number of
edges is nk, where k is the expected number of edges at each vertex when lengths are limited to dMax, and the
amount of time it takes to sort is thus O(nklog(nk)) = O(nklog(n)) since k < n.

The union find algorithm runs in time O(nk + nα(n)), where α is a very slow growing function that is
essentially less than 4. Thus the time is dominated by the fact that we may have to consider every edge to get
connectivity, which is the nk term.

Inserting a new entry into L takes linear time in it’s length, so the total insertion time is O(n2k).
Let a0 be the expected number of positive edges whose lower link in empty, and more generally let ak be

the expected number of positive edges whose lower link has k components. Set m =
∑
k(k − 1)ak. Since every

triangle gets added with it’s longest edge, m is the number of triangles in RdMax(X). The matrix M1,2 has a0
rows and m columns. Note that a0 + a1 + . . . = nk, the number of edges in E and m

Searching Γ takes time that i If we store the information given by Γ as local lists and pass these among levels,
the storage required is O().

Finally, reducing the matrix M1,2 is O(m2a0). Note that in the traditional reduction, the number of columns
is the number of 2-cells which is nk2 and the number of rows is the number of 1-cells nk so the time it takes is
O(n3k5).
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3 Synthetic Data: Generating Functions

Shapes Function f for signal

cos f = amp * cos(2*pi/per * t - pshift*(2*pi/per))

cos 2 per2 = per * 0.3333
amp2 = amp * 0.50
pshift2 = (pshift + (per2 * 0.25)) % per
f = amp * cos(2*pi/per * (t - pshift))
+ amp2 * cos(2*pi/per2 * (t - pshift2))
The combined signal height is then adjusted to be original amplitude

peak peak = 20 f = amp * (-1 + 2 * fabs(cos(pi/per * t - pshift*(pi/per)))**peak)

peak2 peak1 = 10 peak2 = 40 amp2 = amp * 0.70 pshift2 = (pshift1 + (per * 0.5))
% per
f =
amp1 * (-1 + 2 * abs(cos(pi/per * (t - pshift1)))**peak1) +
amp2 * (-1 + 2 * abs(cos(pi/per * (t - pshift2)))**peak2)

trend exp trende = 0.027 f = amp * cos(2*pi/per * (t - pshift))
+ exp(trende * t)

trend linear trendl = 0.5
f = amp * cos(2*pi/per * t - pshift*(2*pi/per))
+ (trendl * t)

damp damp = 0.01
f = amp * cos(2*pi/per * t - pshift*(2*pi/per)) * exp(-damp*t)

saw f = 2 * amp * (((t - pshift) % per) / (per-1))

square f = 2 * amp * round(((t - pshift) % per) / (per-1))

contract f = amp * math.cos(2*pi/per * (t ** 2 / per - pshift))

flat 0

linear (slope * t)

Table S1: Functions of time (t) used to generate profiles. The types of periodic profiles are: cosine (cos), cosine
two signals (cos 2), cosine damped (damp), cosine peaked (peak), cosine exponential trend (trend exp), and
cosine linear trend (trend). The values for amplitude (amp), period (per), and phase shift (pshift) are selected
from a uniform distribution within the defined minimum and maximum. For phase shift, the range is 0 to the
period length. The values for the level of transformation for damp, peak, and trend are defined for a given set.
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4 Synthetic Data: ROC Plots

ROC plots of Performance on identifying periodic signals for different signal shapes and noise levels. These plots
show the degradation in performance for classifying periodic from non-periodic signals. Different shapes of periodic
signals included were cosine, two cosine signals with different amplitudes, cosine peaked, two peaked signals with
different amplitudes, cosine with a linear trend, cosine with an exponential trend, cosine damped, sawtooth, square
waves, and a contracting cosine signal. Non-periodic shapes included were linear and flat. Gaussian noise was
applied to the signals with standard deviation = {0, 25, 50}. The -ln (p-value or score) was used. Plots are
shown for samples = {50, 25, 17}

Shown for all algorithms: SW1perS (SW) (Perea and Harer, 2014), JTK CYCLE (JTK) (Hughes et al., 2010),
Lomb-Scargle (LS) (Glynn et al., 2006), de Lichtenberg (DL) (de Lichtenberg et al., 2005), Persistent Homology
(PH) (Cohen-Steiner et al., 2010).

The R package ROCR was used to compute ROC and AUC (Sing et al., 2005). The results from synthetic
data were plotted in R using the ggplot2 package (Wickham, 2009).
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Figure S3: ROC plots of Performance on identifying periodic signals for different signal shapes and noise levels
on 50 samples.
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Figure S4: ROC plots of Performance on identifying periodic signals for different signal shapes and noise levels
on 25 samples.
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Figure S5: ROC plots of Performance on identifying periodic signals for different signal shapes and noise levels
on 17 samples.
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5 Synthetic Data: Score Distributions

Score distributions for each algorithm on synthetic data with different noise levels and sampling densities. These
show algorithm biases for signal shapes. Number of samples = 50, 25, 17 and noise levels (Gaussian Noise
SD = 0, 25, 50. The same data set used in the ROC analysis was used. The x-axis shows the scores, log
transformed, ranging from the lowest (best score) to the highest (worst score) returned by the algorithm. The
y-axis shows the number of profiles receiving the score. Shown for all algorithms: SW1perS (SW), JTK CYCLE
(JTK), Lomb-Scargle (LS), de Lichtenberg (DL), Persistent Homology (PH).
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Figure S6: Scores distributions on synthetic data for SW1perS.
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Figure S7: Scores distributions on synthetic data for JTK CYCLE.
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Figure S8: Scores distributions on synthetic data for Lomb-Scargle.
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Figure S9: Scores distributions on synthetic data for de Lichtenberg.
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6 Biological Data

Note PH was omitted from further analysis on biological data.

The wild-type data (WT) from Orlando et al. (2008) shows periodic gene expression during the cell division
cycle (CDC) in budding yeast, S. cerevisiae.

The yeast metabolic cycle (YMC) data of Tu et al. (2005) are from S. cerevisiae.
The mammal circadian rhythm data from Hughes et al. (2009) is from liver samples from wild-type mice.

Affymetrix probes were mapped to genes using the Affymetrix Annotations Release 32, June 2011.
YG S98 Annotations, CSV format, Release 32 (3 MB 06/10/11):
http://www.affymetrix.com/Auth/analysis/downloads/na32/ivt/YG S98.na32.annot.csv.zip
Yeast 2 Annotations, CSV format, Release 32 (3.6 MB, 6/10/11):
http://www.affymetrix.com/analysis/downloads/na32/ivt/Yeast 2.na32.annot.csv.zip
Mouse430 2 Annotations, CSV format, Release 32 (16 MB, 6/9/11):
http://www.affymetrix.com/analysis/downloads/na32/ivt/Mouse430 2.na32.annot.csv.zip
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Algorithm Data Set Parameters

SW Yeast Cell Cycle feature.type: 3, nT: 200, allow.Trending: 1, ms.epsilon: 1 -
cos(pi/16), ma.movingWindow: 3

LS Yeast Cell Cycle per min: 64, per max: 112, test freq: 4

JTK Yeast Cell Cycle per min: 64, per max: 112, interval: 16

DL Yeast Cell Cycle num permutations: 10000, period: 97.8

SW Yeast Metabolic Cycle feature.type: 3, nT: 200, allow.Trending: 1, ms.epsilon: 1 -
cos(pi/16), ma.movingWindow: 7

LS Yeast Metabolic Cycle per min: 264, per max: 360, test freq: 4

JTK Yeast Metabolic Cycle per min: 264, per max: 360, interval: 24

DL Yeast Metabolic Cycle period: 300, num permutations: 10000

SW Mammal Circadian feature.type: 3, nT: 200, allow.Trending: 1, ms.epsilon: 1 -
cos(pi/16), ma.movingWindow: 10

LS Mammal Circadian min per: 20, max per: 28, test freq: 4

JTK Mammal Circadian per min: 20, per max: 28, interval: 1

DL Mammal Circadian num permutations: 10000, period: 24

Table S2: Running the Algorithms on Biological Data. For each algorithm and data set, the parameters used to
run the algorithm are listed. For SW1perS, we found these parameters to give the best average results on the
synthetic data. For the Moving Average (ma), the size of the window is the number of samples divided by five.
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symbol SW_rank DL_rank LS_rank JTK_rank Max - Min Norm Plot

SKI7 1 157 2 2.5 154.9018

GGA2 2 638 505 940 987.3183

CRH1 3 440 313.5 940 5796.019

SBH1 4 142 41 36 2018.18

WHI3 5 54 124 281 1640.201

CSH1 6 543 694 1207 447.1636

GDT1 7 212 165.5 1207 3376.449

ZRG17 8 2516 441 281 300.9961

AIM22 9 198 80.5 153 84.61007

CDC11 10 31 283 681 963.0563

PPH21 11 137 51 9 987.4555

YRF1-(1-8) 13 185 1583 681 941.6383

HEM1 14 561 650 940 974.6055

HIS2 15 390 1482.5 681 521.3636

MYO2 16 85 111 153 3584.211

YOX1 17 76 1414 457.5 2123.593

HAC1 18 1646 1472 2600 1845.381

SLM5 19 235 84 153 172.0444

PUS5 20 1582 694 153 106.7517

ALR2 22 98 405 9 155.2843

GIC2 23 338 1544 457.5 2361.804

YRF1-(1-8) 24.5 330 1323 681 3202.917

ETP1 26 1279 1614 2600 29.74337

PHO87 27 657 306 681 587.7062

NHP6A 28 666 558.5 457.5 2352.713

Figure S11: Top 25 results from SW1perS for yeast cell cycle data. Shown by rank against the rankings from DL,
LS, and JTK. Any blank symbols were omitted.
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symbol SW_rank DL_rank LS_rank JTK_rank Max - Min Norm Plot

YAH1 1 1112 86.5 93.5 14.12

ADH1 2 1941 154.5 365 49.29

MYO2 3 3282.5 252 365 5.89

ALD3 4 125.5 20 53.5 3.40

FTR1 5 1742 64 145.5 8.18

GAS3 6 821 323 100.5 5.80

SCW10 7 76.5 178.5 87.5 17.10

HHT1 8 1342 119.5 763.5 40.54

CST9 9 1705 293 763.5 1.16

PMT4 10 868 29 138.5 7.07

TOM22 11 2450.5 560 435.5 7.60

YRO2 12.5 120 55 138.5 26.38

SIL1 12.5 2236.5 114 435.5 1.25

IRA2 14 2161.5 52 235.5 6.76

COP1 15 3060.5 232 601.5 5.25

AIM37 16 2171.5 292 34.5 8.55

ACH1 17 776.5 415.5 343 39.87

TIM23 18 2332.5 26 365 8.28

DSF2 19 552 111.5 601.5 1.44

RPS22B 20 177.5 697 632 43.47

TOM20 21 1355.5 77.5 210.5 9.16

PMT1 22 2233 645 1036.5 3.88

MRM1 23 2421 14 182.5 3.19

GAS1 24 1147 520.5 1085 39.94

HTB2 25 52 46.5 6.5 20.65

Figure S12: Top 25 results from SW1perS for yeast metabolic data. Shown by rank against the rankings from
DL, LS, and JTK. Any blank symbols were omitted.
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symbol SW_rank DL_rank LS_rank JTK_rank Max - Min Norm Plot

Fgf1 1 1451.5 39 116 10916.2

Nr1d2 2 26.5 10 25.5 62708.9

Nampt 3 242.5 48 5 17275.4

Azin1 4 4053.5 134 121 8391.4

Mreg 6.5 1534.5 38 34.5 30373.3

Elovl3 6.5 26.5 1 1 149978.3

Coq10b 8 62 120 100 14706.4

Arntl 9 26.5 7 48.5 5154.5

Kynu 10 2102 50 155.5 19870.7

Insig2 11 201 18 67.5 52612

Upp2 12 201 53 20 2706.5

Gde1 13 1242 73 144.5 12204.3

St3gal5 14 254 65 3 17587.6

Grk5 15 56 177 181.5 1002

Homer2 16 804.5 24 121 6225.1

Rnf125 17 107 57 144.5 101512.1

Slc30a10 18 212.5 69.5 78 5151.2

Avpr1a 19 144.5 111 126 5018.8

Abhd6 20 2289.5 49 64.5 15746.9

Slc37a4 21 1114 9 24 30147.5

C730049O14Rik 22 185 23 51.5 122859.7

Abcg5 23 681.5 35 126 15615.6

1110067D22Rik 24 56 11 32 8859.2

Vps4b 25 4711 170 197.5 15520.2

Gys2 27 532.5 3 6 30658.7

Figure S13: Top 25 results from SW1perS for mammal circadian data. Shown by rank against the rankings from
DL, LS, and JTK. Any blank symbols were omitted.
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Figure S15: Histogram of number of probes by score or p-value for each algorithm on the Yeast Metabolic Cycle
data set (Tu et al., 2005). Also shown with the ln( score or p-value).
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Figure S16: Histogram of number of probes by score or p-value for each algorithm on the Mammal Circadian
Rhythm data set (Hughes et al., 2009). Also shown with the ln( score or p-value).
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Yeast Cell Cycle The number of genes / rank in different sets.

Top # 590 1180 1770 2360 2950 3540 4130 4720 5310 5900

Top % 10 20 30 40 50 60 70 80 90 100

SW and DL 0.51 0.59 0.66 0.7 0.73 0.76 0.79 0.85 0.91 100

SW and LS 0.52 0.60 0.68 0.73 0.77 0.81 0.85 0.89 0.92 100

SW and JTK 0.51 0.59 0.68 0.75 0.75 0.83 0.79 0.73 0.99 100

ALL 0.26 0.42 0.51 0.57 0.60 0.65 0.65 0.65 0.86 100

SW and (JTK or LS or DL) 0.74 0.75 0.82 0.86 0.89 0.92 0.94 0.96 0.99 100

JTK and (SW or LS or DL) 0.80 0.83 0.88 0.96 0.92 0.99 0.87 0.77 1.1 100

LS and (JTK or SW or DL) 0.81 0.86 0.89 0.94 0.95 0.97 0.97 0.98 100 100

DL and (JTK or LS or SW) 0.7 0.78 0.81 0.84 0.85 0.88 0.89 0.93 100 100

Table S3: Yeast Cell Cycle. Percent of overlap of the top percents of probes from the algorithms.
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Yeast Metabolic Cycle The number of genes / rank in different sets.

Top # 933 1866 2799 3732 4665 5598 6531 7464 8397 9330

Top % 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SW and DL 0.36 0.56 0.74 0.83 0.83 0.83 0.84 0.88 0.93 1

SW and LS 0.67 0.78 0.8 0.81 0.83 0.85 0.87 0.91 0.92 1

SW and JTK 0.6 0.73 0.8 0.83 0.86 0.85 0.87 0.87 1 1

ALL 0.23 0.42 0.6 0.71 0.76 0.78 0.8 0.83 0.89 1

SW and (JTK or LS or DL) 0.81 0.88 0.9 0.9 0.9 0.9 0.92 0.95 1 1

JTK and (SW or LS or DL) 0.87 0.96 0.98 0.98 0.99 0.98 0.98 0.93 1.08 1

LS and (JTK or SW or DL) 0.88 0.94 0.95 0.95 0.97 0.98 0.99 0.99 0.97 1

DL and (JTK or LS or SW) 0.55 0.76 0.9 0.96 0.94 0.93 0.93 0.95 1 1

Table S4: Yeast Metabolic Cycle. Percent of overlap of the top percents of probes from the algorithms.
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Mammal Circadian Rhythm The number of genes / rank in different sets.

Top # 4510 9020 13530 18040 22550 27060 31570 36080 40590 45100

Top % 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SW and DL 0.64 0.68 0.65 0.68 0.74 0.8 0.84 0.88 0.92 1

SW and LS 0.67 0.59 0.57 0.64 0.74 0.8 0.85 0.88 1 1

SW and JTK 0.67 0.66 0.65 0.68 0.73 0.78 0.8 0.76 1 1

ALL 0.53 0.55 0.51 0.56 0.63 0.7 0.73 0.72 0.92 1

SW and (JTK or LS or DL) 0.77 0.75 0.74 0.79 0.84 0.88 0.91 0.94 1 1

JTK and (SW or LS or DL) 0.95 0.9 0.89 0.91 0.92 0.92 0.91 0.82 1.11 1

LS and (JTK or SW or DL) 0.95 0.84 0.87 0.92 0.95 0.97 0.98 0.98 1.11 1

DL and (JTK or LS or SW) 0.85 0.88 0.91 0.94 0.95 0.96 0.97 0.97 1 1

Table S5: Mammal Circadian Rhythm. Percent of overlap of the top percents of probes from the algorithms.
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7 Gene lists from ChIP-chip and ChIP-seq Data

For the yeast cell cycle, the ChIP-chip data of Simon et al. (2001) used nine known cell cycle transcription factors:
Mbp1, Swi4, Swi6, Mcm1, Fkh1, Fkh2, Ndd1, Swi5, and Ace2. Their list of selected targets in table 1 was used.

For the mouse circadian rhythm, the Chip-seq data of Koike et al. (2012) used seven known circadian tran-
scription factors: BMAL1, CLOCK, NPAS2, PER1, PER2, CRY1, and CRY2. Their study included measurements
for six time points; we selected the genes that had the largest difference (greater than 50) in tag counts for each
transcription factor/target pair.
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Figure S20: Compiled list of known genes for the yeast cell cycle, and their ranking by each algorithm.
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Figure S21: Compiled list of known genes for the mammal circadian rhythm, and their ranking by each algorithm.
Some genes have multiple probes, and some probes appear less periodic.
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8 Filtering Noise using Replicates

The combined score was the JTK score multiplied by the SW difference score. The SW difference score was the
absolute difference between the SW score on replicate one and the SW score on replicate two. This assumes that
two signals that are both considered very periodic are less likely to be noise. The JTK score was the p-value
from a modified version of JTK that compared the two replicates. JTK was modified to use the signal from the
first replicate as a reference, and the second replicate’s signal was compared without applying different periods
or phase shifts. This assumes that two signals that have highly correlated shapes are less likely to be noise. The
correlation between the signals was computed as in the original version of JTK. The score cutoff of 0.05 was
selected by plotting a histogram of the scores.
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sys_name symbol SW_rank LS_rank JTK_rank DL_rank rep_score Spellman Orlando wt1 wt2

YNL042W BOP3 76.0 657.5 681.0 644.0 1.42e−04

YBL010C −−− 105.0 1498.0 2199.5 1176.0 7.52e−05 x

YBR046C ZTA1 185.0 677.0 1207.0 629.0 1.48e−02 x

YMR226C −−− 192.0 2261.0 940.0 937.0 4.61e−02 x

YOL105C WSC3 219.0 823.5 1207.0 1168.0 3.52e−05 x

YCR002C CDC10 221.0 748.5 1827.0 1224.0 8.37e−03 x

YDR135C YCF1 223.0 1958.5 940.0 735.0 2.70e−02

YLL058W −−− 226.0 773.0 1495.0 974.0 1.55e−03 x

YIL108W −−− 242.0 2095.0 1207.0 1361.0 5.25e−05

YJL197W UBP12 244.0 992.5 940.0 829.0 2.50e−03

YLR284C ECI1 263.0 1213.0 2199.5 1239.0 1.94e−04 x

YNL191W DUG3 305.0 2177.0 2199.5 1628.0 6.09e−03

YLR090W XDJ1 306.0 1620.5 681.0 1061.0 6.95e−03

YMR291W −−− 312.0 1693.5 3010.5 1183.0 6.07e−03 x

YGR234W YHB1 315.0 1645.0 3010.5 1794.0 2.06e−05 x

YDL102W POL3 337.0 1990.0 940.0 647.0 1.08e−05 x x

YPR114W −−− 344.0 1146.0 1207.0 1232.0 2.16e−02

YNR027W BUD17 345.5 873.5 940.0 915.0 7.69e−03

YNL003C PET8 353.0 1243.0 2199.5 1462.0 1.14e−04 x x

YFR028C CDC14 382.0 1089.0 940.0 1025.0 1.03e−04 x

YGL022W STT3 420.0 1081.5 1827.0 692.0 1.92e−05

YBL015W ACH1 437.0 640.5 940.0 1926.0 1.96e−03 x

YOR038C HIR2 442.0 1419.5 940.0 990.0 9.85e−05

YDR393W SHE9 451.0 1656.0 940.0 922.0 3.56e−02

YBR278W DPB3 459.0 1759.0 940.0 672.0 1.51e−04 x

YMR307W GAS1 462.0 1018.5 940.0 601.0 2.09e−05 x

YNL323W LEM3 467.0 664.5 940.0 674.0 1.56e−02

YMR106C YKU80 489.0 1711.0 940.0 1542.0 2.20e−03

YDL239C ADY3 501.0 1836.0 2199.5 2218.0 3.55e−02

YLR037C PAU23 503.0 3117.0 4765.5 3803.0 2.87e−02 x

YBL036C −−− 516.0 1954.5 1495.0 1706.0 1.76e−05

YDL086W −−− 532.0 2060.0 940.0 963.0 1.79e−03

YKL064W MNR2 547.0 1267.5 940.0 1126.0 1.58e−02

YOL058W ARG1 551.0 645.5 940.0 610.0 9.64e−04 x x

YER034W −−− 560.0 1880.5 1495.0 2026.0 1.26e−04

YLR446W −−− 578.0 1738.0 3426.0 1595.0 2.84e−03 x

Yeast Cell Cycle, Top 10% SW, Not Top 10% Others, 
 Noise Filtered, AND Yeast Metabolic Cycle

Figure S22: Yeast Cell Cycle, WT1. Top 10% of SW, not in top 10% of DL, LS, JTK. Filtered for noise using
replicates (a combined score from a modified version of JTK and SW). Overlap with yeast metabolic cycle (YMC)
from Tu et al. (2005). Genes that were in the periodic gene lists from Spellman et al. (1998) or Orlando et al.
(2008) are marked.
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sys_name symbol SW_rank LS_rank JTK_rank DL_rank rep_score Spellman Orlando wt1 wt2

YPR178W PRP4 72.0 977.0 940.0 743.0 1.66e−03

YBR046C ZTA1 185.0 677.0 1207.0 629.0 1.48e−02 x

YML020W −−− 209.0 1196.5 1495.0 877.0 4.71e−08 x x

YLL058W −−− 226.0 773.0 1495.0 974.0 1.55e−03 x

YLR284C ECI1 263.0 1213.0 2199.5 1239.0 1.94e−04 x

YKR095W MLP1 348.0 1534.5 1827.0 1954.0 7.00e−04

YGR196C FYV8 363.0 664.5 1207.0 1123.0 1.84e−02

YOR290C SNF2 391.0 1387.5 681.0 1468.0 4.09e−04

YBR278W DPB3 459.0 1759.0 940.0 672.0 1.51e−04 x

YER007W PAC2 494.0 1309.0 940.0 970.0 8.36e−04

YDL239C ADY3 501.0 1836.0 2199.5 2218.0 3.55e−02

YKL064W MNR2 547.0 1267.5 940.0 1126.0 1.58e−02

YJL047C RTT101 581.0 1693.5 1207.0 1103.0 4.61e−03

Yeast Cell Cycle, Top 10% SW, Not Top 10% Others, 
 Noise Filtered, AND GRR Negative

Figure S23: Yeast Cell Cycle, WT1. Top 10% of SW, not in top 10% of DL, LS, JTK. Filtered for noise using
replicates (a combined score from a modified version of JTK and SW). Overlap with negative universal growth
rate response (GRR) from Slavov and Botstein (2011). Genes that were in the periodic gene lists from Spellman
et al. (1998) or Orlando et al. (2008) are marked.
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sys_name symbol SW_rank LS_rank JTK_rank DL_rank rep_score Spellman Orlando wt1 wt2

YGR001C −−− 259.0 1414.0 681.0 1167.0 7.69e−03

YGL256W ADH4 350.0 1089.0 1207.0 685.0 1.32e−05

YGL099W LSG1 542.0 1846.0 681.0 1136.0 4.61e−02 x

Yeast Cell Cycle, Top 10% SW, Not Top 10% Others, 
 Noise Filtered, AND GRR Positive

Figure S24: Yeast Cell Cycle, WT1. Top 10% of SW, not in top 10% of DL, LS, JTK. Filtered for noise using
replicates (a combined score from a modified version of JTK and SW). Overlap with positive universal growth
rate response (GRR) from Slavov and Botstein (2011). Genes that were in the periodic gene lists from Spellman
et al. (1998) or Orlando et al. (2008) are marked.
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9 GO Enrichment Analysis

9.1 SW1PerS

Term Count % PValue

GO:0033554 cellular response to stress 25 16.78 3.61E-03

GO:0006974 response to DNA damage stimulus 15 10.07 9.79E-03

GO:0006281 DNA repair 14 9.40 6.34E-03

GO:0006302 double-strand break repair 7 4.70 4.25E-03

GO:0006298 mismatch repair 6 4.03 4.82E-04

GO:0000726 non-recombinational repair 5 3.36 1.17E-02

Table S6: Gene Ontology (GO) enrichment of biological processes categories. The top 10% of SW, not top 10%
of DL, JTK, LS; for Yeast Cell Cycle WT1. Gene list analyzed using DAVID, set contains 149 DAVID IDs, using
GOTERM BP FAT. Top by percent, 5 or more in group, p-value < 0.05.
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9.2 DL

Term Count % PValue

GO:0007049 cell cycle 61 32.62 9.83E-17

GO:0022402 cell cycle process 51 27.27 2.23E-13

GO:0022403 cell cycle phase 45 24.06 2.97E-13

GO:0051301 cell division 41 21.93 1.74E-13

GO:0000278 mitotic cell cycle 38 20.32 5.37E-13

GO:0000279 M phase 38 20.32 6.61E-12

GO:0033554 cellular response to stress 35 18.72 1.28E-04

GO:0006259 DNA metabolic process 33 17.65 1.23E-05

GO:0000280 nuclear division 27 14.44 8.20E-11

GO:0048285 organelle fission 27 14.44 2.14E-10

GO:0051276 chromosome organization 26 13.90 4.41E-04

GO:0007067 mitosis 24 12.83 4.42E-09

GO:0000087 M phase of mitotic cell cycle 24 12.83 5.53E-09

GO:0009628 response to abiotic stimulus 22 11.76 2.67E-03

GO:0007059 chromosome segregation 21 11.23 1.79E-07

GO:0051726 regulation of cell cycle 20 10.70 2.68E-06

GO:0006414 translational elongation 20 10.70 1.15E-02

Table S7: Gene Ontology (GO) enrichment of biological processes categories. The top 10% of DL, not top 10%
of SW, JTK, LS; for Yeast Cell Cycle WT1. Gene list analyzed using DAVID, set contains 187 DAVID IDs, using
GOTERM BP FAT. Top by percent, 20 or more in group, p-value < 0.05.
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9.3 JTK

Term Count % PValue

GO:0044265 cellular macromolecule catabolic process 13 14.77 3.64E-02

GO:0009057 macromolecule catabolic process 13 14.77 4.83E-02

GO:0044257 cellular protein catabolic process 12 13.64 1.07E-02

GO:0030163 protein catabolic process 12 13.64 1.38E-02

GO:0019941 modification-dependent protein catabolic process 9 10.23 1.99E-02

GO:0051603 proteolysis involved in cellular protein catabolic process 9 10.23 2.42E-02

GO:0043632 modification-dependent macromolecule catabolic process 9 10.23 2.93E-02

GO:0032543 mitochondrial translation 5 5.68 4.25E-02

Table S8: Gene Ontology (GO) enrichment of biological processes categories. The top 10% of JTK, not top 10%
of SW, DL, LS; for Yeast Cell Cycle WT1. Gene list analyzed using DAVID, set contains 88 DAVID IDs, using
GOTERM BP FAT. Top by percent, 5 or more in group, p-value < 0.05.
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9.4 LS

Term Count % PValue

GO:0006350 transcription 17 15.74 3.34E-02

GO:0006508 proteolysis 13 12.04 2.96E-02

GO:0051603 proteolysis involved in cellular protein catabolic process 10 9.26 2.91E-02

GO:0010033 response to organic substance 8 7.41 2.43E-02

GO:0015749 monosaccharide transport 5 4.63 8.64E-04

GO:0008645 hexose transport 5 4.63 8.64E-04

GO:0008643 carbohydrate transport 5 4.63 6.09E-03

GO:0030433 ER-associated protein catabolic process 5 4.63 7.19E-03

Table S9: Gene Ontology (GO) enrichment of biological processes categories. The top 10% of LS, not top 10%
of SW, DL, JTK; for Yeast Cell Cycle WT1. Gene list analyzed using DAVID, set contains 108 DAVID IDs, using
GOTERM BP FAT. Top by percent, 5 or more in group, p-value < 0.05.
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