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Abstract

Background: Identifying periodically expressed genes across different processes (e.g. the cell and metabolic
cycles, circadian rhythms, etc) is a central problem in computational biology. Biological time series may
contain (multiple) unknown signal shapes of systemic relevance, imperfections like noise, damping, and
trending, or limited sampling density. While there exist methods for detecting periodicity, their design biases
(e.g. toward a specific signal shape) can limit their applicability in one or more of these situations.

Methods: We present in this paper a novel method, SW1PerS, for quantifying periodicity in time series in a
shape-agnostic manner and with resistance to damping. The measurement is performed directly, without
presupposing a particular pattern, by evaluating the circularity of a high-dimensional representation of the
signal. SW1PerS is compared to other algorithms using synthetic data and performance is quantified under
varying noise models, noise levels, sampling densities, and signal shapes. Results on biological data are also
analyzed and compared.

Results: On the task of periodic/not-periodic classification, using synthetic data, SW1PerS outperforms all
other algorithms in the low-noise regime. SW1PerS is shown to be the most shape-agnostic of the evaluated
methods, and the only one to consistently classify damped signals as highly periodic. On biological data, and
for several experiments, the lists of top 10% genes ranked with SW1PerS recover up to 67% of those generated
with other popular algorithms. Moreover, the list of genes from data on the Yeast metabolic cycle which are
highly-ranked only by SW1PerS, contains evidently non-cosine patterns (e.g. ECM33, CDC9, SAM1,2 and
MSH6) with highly periodic expression profiles. In data from the Yeast cell cycle SW1PerS identifies genes not
preferred by other algorithms, hence not previously reported as periodic, but found in other experiments such
as the universal growth rate response of Slavov. These genes are BOP3, CDC10, YIL108W, YER034W, MLP1,
PAC2 and RTT101.

Conclusions: In biological systems with low noise, i.e. where periodic signals with interesting shapes are more
likely to occur, SW1PerS can be used as a powerful tool in exploratory analyses. Indeed, by having an initial
set of periodic genes with a rich variety of signal types, pattern/shape information can be included in the study
of systems and the generation of hypotheses regarding the structure of gene regulatory networks.
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Background
Previous Work
Many methods are available for detecting periodicity
in time series data [1, 2], and many have been success-
fully applied in the task of identifying periodic gene
expression. Most of these algorithms can be classified
into three broad classes, based on how/if they use ref-
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erence patterns. In particular: approaches which use si-
nusoidal curves as a base for comparison, user-defined
shape templates, and those that do not use a reference
pattern. We provide a brief description below.

Methods in the first class determine the period and
measure the strength of periodicity by comparing the
input time series to sinusoidal curves with different
periods. This includes algorithms which transform a
time series into the frequency domain, as with the dis-
crete Fourier transform, and those that fit sinusoidal
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curves to the target signal. The method introduced in
[3] uses a Fourier-based approach and a measure of
amplitude (as an indicator of regulation strength) to
generate a score, as well as a permutation test to asses
significance. COSOPT [4] compares a signal to cosine
curves with different phases and periods to measure
their correspondence, and then uses empirical resam-
pling to compute significance. Lomb-Scargle [5, 6] uses
a variation of the discrete Fourier transform to han-
dle unevenly sampled data, and returns a significance
score.

Other methods compare the signal to reference
curves that are specified by the user. The method of
Luan and Li [7], for example, generates a spline func-
tion to represent the pattern of known periodic genes,
and then uses this shape model to score other signals.
JTK CYCLE [8] determines increasing or decreasing
patterns of the observations in both a reference curve
and the signal, and then measures the statistical sig-
nificance of correlation between them.

Other methods, by way of contrast, do not use a
set pattern to identify signals of interest, but instead
attempt to discover patterns that exist in the data.
Address Reduction [9] measures the algorithmic com-
pressibility of the signal; a signal that is more com-
pressible indicates there is a pattern and it might
be of biological interest. It is worth noting that non-
compressibility does not imply periodicity. An instance
of Persistent Homology [10] pairs, in a subtle way, min-
ima and maxima of a time series. This can be used to
measure periodicity: if there is only one minimum and
maximum pair, it is considered to be a perfect oscilla-
tion. Additional oscillations in the time series will cre-
ate more minimum-maximum pairs, indicating a less
perfect curve.

A comparative study of the Lomb-Scargle, Persistent
Homology, JTK CYCLE and de Lichtenberg methods
was undertaken in [1]. One of their main conclusions is
that curve shape has considerable impact on the scor-
ing of biological signals; this is specially relevant in
exploratory settings where the shapes of interest pro-
duced by a particular periodic process are not known.

Our Contribution
SW1PerS, the algorithm introduced here, was de-
signed to help overcome the limitations posed by:
Signal-shape biases in the rankings of algorithms which
use predetermined templates, the effects of damping
in periodicity estimation, and the difficulty of inter-
preting scores derived from p-values. In a nutshell,
SW1PerS transforms the input time series into a high-
dimensional set of points (also referred to as a point
cloud) and interprets periodicity of the original sig-
nal as “circularity” of this set. When constructing

this point cloud one uses a local normalization pro-
cess geared toward diminishing the effects of damping.
A more in depth description will be presented in the
Methods section.

We compare SW1PerS (SW) to existing algorithms,
specifically: Lomb-Scargle (LS), de Lichtenberg (DL),
JTK CYCLE (JTK), and Persistent Homology (PH).
The first test evaluates their performance on separat-
ing periodic from non-periodic signals in a synthetic
data set. Their biases for different signal shapes is also
analyzed. We then examine how the algorithms behave
when applied to real data from different periodic pro-
cesses and species: the cell cycle in yeast, the metabolic
cycle in yeast, and circadian rhythms in mouse.

Results: Synthetic Data
Data Description
The synthetic data used in this paper attempts to cap-
ture characteristics found in biological time series, but
was generated with known parameters so that results
across algorithms could be compared. The periodic
shapes included can be seen in Figure 1; please refer
to the supplements (table S1) for the equations which
generate these curves.

Figure 1 Periodic and Non-Periodic signals in the synthetic
data. Signals are shown with additive Gaussian noise with SD
= 0, 25, 50. Please refer to an electronic version for colors.

The periods and amplitudes were fixed, but the
phase shifts were allowed to vary from 0 to the length
of the period. The period length was 100 (time units)
and the signals covered 200 units of time, so each signal
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spans two cycles. One thousand signals were generated
for each signal shape.

Four noise models were applied to the set of signals,
each at five different levels: Gaussian Additive with
standard deviation SD equal to 0, 12, 25, 37 and 50,
Laplacian Additive with spread b at 0, 8.49, 17.68,
26.16, and 35.36, Gaussian Multiplicative with SD
equal to 0, 0.12, 0.25, 0.37 and 0.5, and Laplacian
Multiplicative with b = {0, 0.08, 0.18, 0.26, 0.35}. The
standard deviation SD for additive (resp. multiplica-
tive) Gaussian noise and the spread b for additive
(resp. multiplicative) Laplacian noise were matched
(SD =

√
2b) so the distributions would have the same

variance. Given the shapes of the distributions, this
results in the Laplacian noise model producing signals
with more accentuated outliers, as compared to the
less extreme behavior of the Gaussian noise. The ad-
ditive and multiplicative variances were not matched
to each other.

Synthetic Data Analysis
In what follows we present our results on the synthetic
data. The first analysis of performance is how well an
algorithm can distinguish between periodic and non-
periodic signals for several noise models, levels of noise
and temporal sampling density. The second explores
signal shape bias for each method. For this study JTK,
LS, DL, PH and SW1PerS were set to scan for period-
icity at a period-length equal to the true period.

Receiver Operating Characteristic (ROC) curves
provide a succinct visualization of the classification
accuracy furnished by a scoring scheme. In a nutshell,
each point (F, T ) in the ROC curve records the pro-
portion of signals which have been correctly (T ) and
incorrectly (F ) classified as periodic for a particular
choice of score cut-off. The ROC curve is formed as
this choice is varied. It follows that the area under
curve (AUC) is an explicit numerical summary for the
classification accuracy of a scoring scheme: a value of
1 for the AUC implies a perfect classifier, while a value
of 0.5 corresponds to random classification. We report
in Figures 2 and 3 the AUCs obtained on the synthetic
data for all algorithms under consideration. The ROC
curves for each number of samples, noise model, noise
level, and shape can be found in the supplements (Fig-
ures S3-S14).

The first thing to notice (see Figures 2 and 3) is that
at the low sampling (17 time points) and low noise
regime (SD = 0 to 12 in the additive Gaussian model,
SD = 0 to 0.12 in the multiplicative, b = 0 to 8.49 in
the additive Laplacian and b = 0 to 0.08 in the mul-
tiplicative), SW has the best performance among the
evaluated algorithms in the task of identifying periodic
and non-periodic signals. Moreover, as the number of
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Figure 2 AUC’s showing the algorithms’ performance on
identifying periodic signals for different signal shapes, additive
Gaussian noise levels (standard deviation = {0,12,25,37, 50}),
and number of samples (= {50, 25, 17}). Please refer to an
electronic version for colors.

samples increases and the noise level is kept constant
(SD = 0), SW continues to be at the top even as the
other algorithms improve their scores. This is due to
signals like the contracting cosine and the exponential
trend, for Fourier-based methods; e.g. Lomb-Scargle
and de Lichtenberg. Indeed, for these types of signals
the spectral density will not be as concentrated at a
single frequency. This, even when there is a clear re-
peating pattern, which methods like SW and JTK cor-
rectly identify.

Classification results deteriorate across the board as
noise increases, with DL being the most resilient – spe-
cially in high-sampling conditions, and SW performing
on par with the others. It is worth noting the similarity
in spacing and ordering (with respect to signal shape)
of the AUC scores between algorithms. This can be
interpreted as follows: for all the evaluated methods
classification is more accurate for simpler signals (e.g.
cosines and square waves) but as shape patterns be-
come more intricate (e.g. contracting cosine and dou-
ble peaked) correct classification in the presence of
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noise is more difficult. Indeed, periodicity (interpreted
as the repetition of patterns) is more severely affected
in complicated signal shapes when random additive
noise increases.

If we now turn our attention to Figure 3, we see a
very similar picture to what we have described so far.
That is, even with Laplacian noise, which tends to add
more accentuated outliers, the relative performance of
the algorithms tends to be similar. This can be inter-
preted as follows: the algorithms presented here are
stable, for the most part, for the noise models under
consideration. The exception is PH, as can be seen
from the figures.

In summary: For the noise models considered here,
SW1PerS is the best performer in the no-noise/all-
samplings and small-noise/low-sampling regimes. de
Lichtenberg is the most successful in the medium to
high noise regime. What we will show next is that
SW1PerS has better ranking properties, in that it has
a greater richness of signal types at the top of its score
distributions.

In our second analysis, we examined how biased each
algorithm was toward each signal shape. This can be
visualized by plotting the distribution, as a histogram,
of periodicity scores for all instances of all signal shapes
in the synthetic data (Figure 4). When one shape
consistently receives better scores than all others, the
algorithm is biased towards this shape. For JTK and
LS, we can see a strong bias for cosine signals, which
receive the best scores (Figure 4). DL groups most ex-
emplars at an intermediate level, except for peak2 and
contracting signals which receive worse scores, and the
trended signals which are distributed across a wide
range. For SW1PerS, there is a mixture of cosine, co-
sine 2, cosine damped, and square signals near the top
of the rankings. These are followed closely by peaked
and sawtooth signals. The plots of score distributions
for each algorithm, number of samples, noise level, and
shape can be seen in the supplement (Figures S15-
S34). As the noise level increases, these divisions by
shape become further blurred. In summary, SW1PerS
is the method with the most shape variation for signals
scored as highly periodic, and the only one to include
damped shapes at the top of its rankings.

Methods such as JTK and LS base their score on
p-values. This has a subtle drawback: increasing the
number of samples on a periodic curve causes the
p-values to become more significant, muddling com-
parisons across experiments with different numbers
of time points. Since SW1PerS ignores the number
of samples in its measure of periodicity, it is more
amenable to inter-experiment queries.
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Figure 4 Biases for curve shapes for each algorithm (rows).
Distributions of scores are by shape with no noise (Gaussian
noise SD=0). The x-axis shows the log of the scores, ranging
from the lowest (best score) to the highest (worst score)
returned by the algorithm. The y-axis shows the number of
signals receiving the score. Please refer to an electronic version
for colors.

Significance Analysis

Using synthetic data we have shown that SW1PerS is
a powerful method for quantifying periodicity in time
series data. And though the score it produces does
not have the subtle drawbacks of methods based on
p-values, it is still important to assess its statistical
significance.

In what follows we will present a permutation analy-
sis of the SW1PerS score, in order to quantify the prob-
ability that observed good scores are due to chance
alone. In particular, we compute the empirical proba-
bility that a permuted version of a signal gets a better
score than the original one. The setup is described be-
low.



Perea et al. Page 5 of 12

Figure 3 AUC’s showing the algorithms’ performance on identifying periodic signals for different signal shapes, noise models, noise
levels (SD and b) and number of samples. Please refer to an electronic version for colors.

For permutation testing we use signals with 25 time
points and Gaussian additive noise of 12. One sig-
nal was selected for each shape. This set of one sig-
nal per shape was then subjected to permutation test-
ing. For permutation testing, each original signal was
permuted using python’s random.shuffle method to
create a sample, of size N , of permuted versions. This
process was repeated R times. Each one of the per-
muted signals, along with the original ones, were then
run through SW1PerS. For each sample of size N , the
p-value was computed as the proportion of permuted
signals with SW1PerS score better than or equal to
that of the original version.

The number N of permuted signals was tested at
increasing orders of magnitude: 1000, 10,000, 100,000.
The number of repetitions R was set to 5. The con-
vergence of the p-values for 5 (= R) repetitions and
100,000 (= N) permutations was sufficient for analy-
sis. In particular, the standard deviation of the com-
puted p-values for 5 repetitions, across all shapes, was
less than 0.0023.

We report in Table 1 the mean p-values, across the 5
repetitions, along with their computed standard devi-
ations for all signal shapes. The low p-values, save for
the most challenging signal types, suggests that as-
signing a good score with SW1PerS by chance alone is
highly unlikely. Figure S35 (supplements) depicts his-
tograms of the distributions of scores for the permuted
signals.

Type Shape Mean p-value Std
Periodic Cos 0.00005 0.000012

Cos 2 0.003354 0.000313
Peak 0.010792 0.000363

Trend Lin 0.009752 0.00035
Trend Exp 0.161562 0.001052

Damp 0.006814 0.000177
Saw 0.00027 0.000035

Square 0.00001 0.00001
Contract 0.262642 0.002222

Non-periodic Flat 0.54663 0.002278
Line 0.935736 0.001094

Exp Decay 0.897834 0.000586
Sigmoid 1 0

Table 1 Computed mean p-values and standard deviations, across
5 repetitions, for each signal type.

Results: Biological Data
Biological Data Sets
We examined the results of the algorithms on data sets
from three microarray experiments. These experiments
were designed to measure periodic gene expression of
different processes in different organisms which, as we
will show, feature signal shapes which deviate from the
usual cosine-like curves.

The wild-type data (WT) from [11] shows periodic
gene expression during the cell division cycle (CDC)
in budding yeast, S. cerevisiae. A population of wild-
type cells were synchronized and samples were taken
at 16 minute intervals. The period for the cell cycle
in this experiment is estimated to be approximately
95 minutes, and the data sets cover a recovery period
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and roughly two cell cycles. This data set contains 15
samples, but only the last 13 were used in order to
omit a stress response. There are two replicates, WT1
and WT2.

The yeast metabolic cycle (YMC) data of [12] are
from S. cerevisiae that were grown to a high density,
briefly starved and then given low concentrations of
glucose. Samples were taken at variable intervals of 23-
25 minutes. We evened the sample intervals by chang-
ing the times to every 24 minutes. The yeast metabolic
cycle is estimated to be approximately 300 minutes;
this data set covers approximately three cycles and
contains 36 samples.

The mammal circadian rhythm data from [13] is from
wild-type mice that were synchronized by entraining
them to an environment with 12 h light and 12 h dark
for one week. They were then placed into total dark-
ness. Samples were taken from the liver every hour.
The period of the circadian rhythm is approximately
24 hours, and this data set covers two circadian cycles
and contains 48 samples.

For the yeast cell cycle, the data has a low sampling
density of 13 samples for two periods (6.5 samples per
cycle). Additionally, the data is damped. The yeast
metabolic cycle data has a higher sampling density of
36 samples for three periods (12 samples per cycle). For
the circadian rhythm, the data has a higher sampling
density of 48 samples for two periods (24 samples per
cycle) and the data appear noisier than the yeast cell
cycle data.

Biological Data Analysis
Each data set was run through the LS, JTK, DL, and
SW algorithms (Parameters in Table S3). We omit-
ted PH from further analysis, as it did not perform
as well as the others on the synthetic data. Compar-
ing these algorithms is challenging; unlike in the syn-
thetic data there is no ground truth; the algorithms
return p-values or scores that can be difficult to com-
pare directly, and their score distributions are difficult
to interpret (Figures S39-S41). We evaluate the perfor-
mance of SW on biological data, relative to the other
algorithms, based on its ability to: find periodic shapes
which the other algorithms also identify; find uncom-
mon signals that have nonstandard periodic shapes;
and to recover signals of genes that are believed to be
part of a given periodic process. In addition, we re-
port sets of genes from overlapping periodic processes
found with SW1PerS. We present next the results of
these analyses.

Finding common periodic signals.
One of the goals in developing SW was that it would
be more shape agnostic, and therefore able to detect a

larger range of periodic shapes in the data. SW should,
however, recover results from the top of the other algo-
rithm’s lists, which have been shown to detect periodic
signals.

First, we take the top 10% and 20% of results by
rank from each algorithm and compare their overlaps
(Table 2).

Data Cell Cycle Met. Cycle Circ. Rhy.
Top # 590 1180 933 1866 4510 9020
Top % 10% 20% 10% 20% 10% 20%
SW∩DL 51% 59% 36% 56% 64% 68%
SW∩LS 52% 60% 67% 78% 67% 59%

SW∩JTK 51% 59% 60% 73% 67% 66%
All 26 % 42% 23% 42% 53% 55%

Table 2 Percentage of overlap from the top 10% and 20% of
probes as ranked by the algorithms.

Complete Venn diagrams (Figures S42-S44) and ta-
bles of percent overlap (Tables S4-S6) can be found in
the supplements.

We also quantify the ability of each algorithm to
identify genes in sets of consensus. For this analysis, a
set of consensus is a list of probes which appear in the
top 10% of at least 3 different algorithms. We report
in Table 3 the number, and percentage, of consensus
genes that each algorithm is able to discover in its top
10% of rankings. We do this for each one of the bio-
logical data sets.

Data Set Alg #Consensus %Consensus
Yeast Cell Cycle sw 316 0.90
Consensus: 353 dl 289 0.82

ls 298 0.84
jtk 311 0.88

Yeast Met. Cycle sw 553 0.93
Consensus: 596 dl 345 0.58

ls 563 0.94
jtk 541 0.91

Mammal Circadian sw 3090 0.82
Consensus: 3767 dl 3330 0.88

ls 3640 0.97
jtk 3636 0.97

Table 3 Number and percentage of probes in the top 10% of
rankings from each algorithm that are in a consensus set. That is,
those which appear in the top 10% of rankings for at least three
algorithms.

As shown, SW has the highest percentage of probes
(90%) in the consensus for the yeast cell cycle. SW has
second highest percentage (93% compared to 94% for
LS) in the yeast metabolic cycle. In the mammal cir-
cadian set, SW has 82% in the consensus set, while the
other algorithms have higher percentages (88-97%).
These analyses suggest that SW1PerS is able to iden-
tify a large portion of genes labeled as highly periodic,
even when the labelling process has been done with
very different algorithms.
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Finding uncommon periodic signals.
To determine if SW finds unusual periodic shapes that
other algorithms might overlook, we next examine sig-
nals ranked highly only by SW. To this end, we study
the sets of signals that are in the top 10% of SW’s
rankings, but not in the top 10% for any other algo-
rithm. These sets include 151 probes of a total 5900
yeast cell cycle probes on the microarray, 179 of 9335
yeast metabolic probes, 1029 of 45101 mammal cir-
cadian probes. The yeast metabolic cycle data, with
higher sampling and three cycles, shows interesting ex-
amples (Figure 5).
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Figure 5 Some example shapes in the yeast metabolic cycle
data found in the top 10% of SW results, but not in the top
% listed (first column) of any of the other algorithms. The
columns are: gene symbol; rank from SW, DL, LS, and JTK;
amplitude; and the plot of the time series. Ties in the rank are
averaged. The amplitude is the maximum minimum. The plots
are normalized from the minimum to the maximum of the
signal. For a full listing of genes in the top 10% of one
algorithm but not in the top 10% the others, see supplemental
files “top genes”.

All signals in this figure are listed in the 3,656 probes
(39% of all probes on the array) identified as periodic
in [12]. They use an autocorrelation function with a
period determined by Lomb-Scargle. These signals are
ranked very highly by SW, are not necessarily highly
periodic according to the other algorithms under con-
sideration, and have shapes which are very unusual.
Notice that a repetition across three periods makes it
highly unlikely for these shapes to be artifacts.

Finding signals that are part of a periodic process.
To determine if the algorithms recover genes associated
with periodic processes, we examine their rankings of
genes associated with the yeast cell cycle and the cir-
cadian rhythm. The lists of genes were created from
previous studies that locate the binding sites of genes
known to be part of the given periodic process.

For the yeast cell cycle, the ChIP-chip data of [14]
includes nine known cell cycle transcription factors:
Mbp1, Swi4, Swi6, Mcm1, Fkh1, Fkh2, Ndd1, Swi5,
and Ace2. From this data set, we selected a list of
141 genes as targets of these transcription factors. For
the mouse circadian rhythm, the Chip-Seq data of [15]
includes seven known circadian transcription factors:

BMAL1, CLOCK, NPAS2, PER1, PER2, CRY1, and
CRY2. From this data set, we selected 361 genes as
targets of these transcription factors. See Methods for
our inclusion criteria.

Promoter binding does not guarantee functional reg-
ulation and therefore some targets may not be period-
ically expressed in response to binding by a cell cy-
cle or circadian rhythm transcription factor. However,
for including genes in our periodic process list, we are
willing to accept the cost of including false positives in
exchange for the benefit of not using other periodicity
detection methods to determine inclusion. The rank-
ings of these genes are visualized with a histogram to
show how periodic the algorithms consider them (Fig-
ure 6).
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Figure 6 Distribution of genes identified as targets of
transcription factors involved in periodic processes. The yeast
cell cycle list comes from ChIP-chip experiments and the
mammal circadian rhythm data comes from ChIP-Seq
experiments.

For the yeast cell cycle, SW and DL pick the highest
number of binding targets at the top of their rankings,
with DL selecting the most. Within the top 10% of
the rankings, DL finds 53% of the genes, SW 24%, LS
22%, and JTK 19%. For the mammal circadian data,
the distributions for the top rankings are more simi-
lar; SW and the other algorithms find 50-55% of the
gene list within the top 10% of their rankings. We find
that these results are relatively stable across different
cutoffs, as shown in Tables 4 and 5.
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Alg 5% 10% 15% 20%
SW rank 14 24 31 35
DL rank 39 53 56 59
LS rank 9 22 35 38
JTK rank 10 19 31 40

Table 4 Overlap between algorithm rankings and binding data for
Yeast Cell Cycle data. The percent of probes in the top X% of
rankings for each algorithm that are in the set of bindings targets
that we compiled from the ChIP-chip data of Simon, et al, 2001.

Alg 5% 10% 15% 20%
SW rank 32 50 63 74
DL rank 41 54 69 70
LS rank 37 53 65 71
JTK rank 35 55 70 78

Table 5 Overlap between algorithm rankings and binding data for
Mammal Circadian data. The percent of probes in the top X% of
rankings for each algorithm that are in the set of bindings targets
that we compiled from the ChIP-Seq data of Koike, et al, 2012.
Note that the array for the circadian data set has multiple probes
for some genes and duplicates were not removed.

In contrast with SW, LS and JTK have pushed a
larger portions of these genes to the lowest rank. See
supplement for a comparison of rankings for yeast
cell cycle (Figure S45) and mammal circadian rhythm
(Figure S46) for a selected set of known genes.

Discovery of signals from multiple processes.
To determine if SW finds genes involved in multiple
processes in budding yeast, we compared cell cycle
genes preferred by SW with results from other exper-
iments in yeast. To create the list of genes that SW
prefers, we selected the top 10% of ranked results from
SW that were not in the top 10% of ranked results for
the yeast cell cycle (WT1) on either DL, JTK or LS.
This results in 151 probes with 148 unique systematic
names. To filter out probes that are potentially more
noise than signal, we compared the replicates WT1
and WT2 using a combined score from SW and JTK
(see Supplements, section 8). A cutoff of 0.05 yielded
a list of 77 probes.

We compared this set of signals to lists of genes from
other experiments: the gene list of the yeast metabolic
cycle (YMC) from [12] and the gene lists of the positive
and negative universal growth rate response (GRR)
from [16]. The genes with universal growth rate re-
sponse are a subset of the periodically expressed genes
in the yeast metabolic cycle [16]. The percent overlap
between our list of 77 probes and these data sets are
shown in Table 6. (Supplemental figures S47-S49.)

In the overlap with the yeast metabolic data, but not
previously identified as periodic in [11], was CDC10, a
component of the septin ring [17]. Not identified in [18]
or [11] were BOP3, a potential target of Cdk1 [19]; and
YIL108W and YER034W, which are involved in the
response to DNA replication stress [20]. In the over-
lap with the negative universal growth rate response,

Dataset Overlap ¬Orlando ¬Spellman ¬Either
YMC 36 (47%) 21 (27%) 30 (39%) 18 (23%)

GRR Pos 3 (4%) 2 (3%) 3 (4%) 2 (3%)
GRR Neg 13 (17%) 8 (10%) 12 (16%) 8 (10%)

Table 6 Number of probes from the top 10% of SW, not in the
top 10% of other algorithms, filtered for noise using the
replicates, that overlap with other data sets. We also show the
numbers of these probes not identified in Orlando 2008, Spellman
1998, and not in either of these data sets.

but not previously identified as periodic in [11] or [18],
were MLP1, which has a role in controlling the length
of telomeres [21]; PAC2, which is involved in micro-
tubule functioning and chromosome segregation [22];
and RTT101, which is involved in the progression of
anaphase [23]. The algorithm rankings and time series
for these genes are shown in Figure 7.

Gene

BOP3

CDC10

YIL108W

YER034W

MLP1

PAC2

RTT101

SW

76

221

242

560

348

494

581

LS

657.5

748.5

2095

1880.5

1534.5

1309

1693.5

JTK

681

1827

1207

1495

1827

940

1207

DL

644

1224

1361

2026

1954

970

1103

WT1 WT2

10

10

20

25

25

15

15

%

Figure 7 Examples of genes from the yeast cell cycle data in
the top 10% of SW, not in the top % listed (first column) of
other algorithms, filtered for noise, that overlap with other
data sets and have not been identified in [11] and/or [18].
Columns are gene symbols; the rank out of 5,900 probes for
each method; and the plot of the wild-type replicates 1 and 2.
Ties in rank are averaged. The plots are normalized from the
minimum to the maximum. For a full listing of genes in the
top 10% of one algorithm but not in the top 10% the others,
see supplemental files “top genes”.

Discussion
The results from the synthetic data show that SW is
comparable to other popular algorithms for most sig-
nal shapes, noise levels, and sampling densities. Ad-
ditionally, SW outperforms DL, LS, JTK, and PH on
the low noise regime and across all sampling densi-
ties. This analysis has shown that SW1PerS performs
well on data that has shapes which occur in biolog-
ical systems from different organisms, and that it is
well behaved under sampling densities and noise lev-
els found in microarray data sets. SW1PerS shows less
bias against damped signals, which occur frequently
for instance in the yeast cell cycle data.

The analysis of the biological data shows that
SW1PerS is able to recover many of the signals other
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algorithms find, and can additionally discover non-
cosine shapes that other algorithms might exclude. We
believe that finding signals with a greater diversity of
shapes well outweighs the cost of giving higher ranks
to signals that might appear to be noise. SW also ap-
pears to detect different types of biological processes
than the other algorithms based on GO enrichment
(see Supplemental table S7-S14).

Each algorithm tested here has strengths and weak-
nesses that vary by signal shapes, noise levels, and
sampling rates. For SW1PerS, in particular, we have
observed the following relative strengths:
• SW1PerS, in the low noise range, has been shown

to be the most shape-agnostic algorithm out of
the methods studied here.
• SW1PerS is able to effectively estimate periodicity

even as the period length changes from oscillation
to oscillation. We saw this, for instance, with the
contracting cosine in the synthetic data.
• The score that SW1PerS returns has a geometric

interpretation, and can be compared across differ-
ent data sets.
• SW1PerS can be used on data with low temporal

resolution and uneven time spacing.
• While the algorithm requires the selection of cer-

tain parameters (e.g. window size, embedding di-
mension, etc), the theory behind the method sug-
gests reasonable values.
• Even though the inner-workings of the SW1PerS

algorithm are quite different from the other meth-
ods studied here, it is able to recover – to a large
extent – what other algorithms find.

There are also weaknesses which are worth keeping
in mind:
• The implementation we have of SW1PerS has

been clocked at between 0.5sec and 1.0sec per sig-
nal, on a laptop computer. Hence, running-time
can be an issue. We expect that as better algo-
rithms for computing 1-persistent homology and
more computational resources become available,
this problem can be mitigated.
• The probability distribution for the SW1PerS

score, even for the additive Gaussian noise model,
has not been described as of yet. And though
studying this distribution is out of the scope of
the present article, we have used synthetic data
– where the ground truth is known – to assess
the performance of SW1PerS relative to other al-
gorithms. In addition, permutation tests were also
performed to evaluate significance and positive re-
sults were obtained as shown in Table 1.
• As we have observed with the synthetic data,

SW1PerS tends to degrade as noise increases, and
it does so at a faster rate than some of the other

methods studied here. Signal processing, however,
is a rich field with highly successful denoising al-
gorithms that can be brought to bear in this prob-
lem.

• SW1PerS does not recover the phase or period
length.

Keeping all this in mind, the analyses presented here
have shown the benefits of applying SW1PerS, espe-
cially in exploratory situations where signal shapes
might not be known and a broad set of candidates
is desirable.

Conclusions
We have presented in this paper a new algorithm,
SW1PerS, for quantifying periodicity in time series
data. The algorithm has been extensively tested and
compared to other popular methods in the literature,
using both synthetic and biological data. Specifically,
with a vast synthetic data set spanning 14 differ-
ent signal types (10 periodic and 4 non-periodic), 4
noise models, 5 noise levels and 3 sampling densities,
it was shown that SW1PerS outperforms the other
algorithms presented here in the low-noise and low-
sampling regimes. Moreover, it exhibits at the top of
its rankings the most variety in signal types, making it
the most shape-agnostic and the only one to identify
damped signals as highly periodic. In the biological
data SW1PerS recovers, to a large extent, what other
algorithms have identified in previous work. Moreover,
it was also able to discover signals with interesting
shapes, which were overlooked by the other methods.

By using SW1PerS along with other algorithms that
complement its strengths and lessen its weaknesses, it
can be used as a powerful tool in exploratory analyses.
Indeed, in biological systems with low noise, i.e. where
periodic signals with interesting shapes are more likely
to occur, SW1PerS can be used to identify an initial
set of periodic genes with a rich variety of signal types.
Patterns and shape information can then be included
in the study of systems, as well as in the generation of
hypotheses regarding the structure of gene regulatory
networks.

Methods
The SW1PerS Algorithm
The way SW1PerS recognizes periodicity is simple: It
measures the existence of a distinctive pattern in the
graph of the signal, and quantifies the extent to which
it repeats. The quantification step, in contrast with
other methods, does not involve the usual measures
of correlation. Instead we use tools from topologi-
cal data analysis [24], a new set of techniques that
probe/quantify the shape of data, to measure the cir-
cularity of a point cloud derived from the time series.
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More specifically, given a time series g0, g1, . . . , gS
(e.g. of gene expression data) measured at times
t0, t1, . . . , tS , we map the interval [t0, tS ] linearly onto
[0, 2π] and apply cubic splining to obtain a continu-
ous function g : [0, 2π] −→ R so that g(0) = g0 and
g(2π) = gS . For a fixed 0 < w < 2π, referred to as the
window size, and each time t ∈ [0, 2π − w] we con-
sider the graph of g restricted to the interval [t, t+w].
Let us use figure 8, where we depict a prototypical
function g with a window of length w, as a running
example.

Figure 8 g along with a window of length w starting at
t ∈ [0, 2π − w].

Sliding this window (the first two words in the
acronym SW1PerS) corresponds to letting t vary from
0 to 2π − w, and it follows that each t ∈ [0, 2π − w]
yields a snapshot, or snippet, from g. If these snippets
were arranged according to their degree of similarity,
similar snippets being closer, then the emerging pic-
ture would be analogous to that in figure 9.

Figure 9 Arrangement of snippets according to similarity.

The repetition of a pattern in the graph of g is thus
associated with the circular arrangement of the snip-
pets, while its distinctiveness corresponds to the size
of the “hole” in the middle of the arrangement. Notice
that the term “pattern” applies to any type of snippet;
this is what gives SW1PerS its shape-agnostic nature.

We formalize this construction as follows: let M be a
positive integer (usually larger than twice the number

of time points) and set τ = w
M for some window size

w ∈ (0, 2π). The theory behind SW1PerS [25] implies
that a good window size should be close to 2πM

L(M+1) ,

where L is the number of expected periods.

The discretized sliding window starting at t is given
by the vector

SWM,τg(t) =


g(t)

g(t+ τ)
...

g(t+Mτ)


As we let t take values in a (sufficiently dense) fi-
nite set a T ⊂ [0, 2π − w], the result is a collection
of points X ⊂ RM+1 which we refer to as a sliding
window point cloud. In this cloud, viewed as a sub-
set of RM+1, two points are close if and only if the
corresponding snippets they discretize are similar. It
follows that the extent to which X can be thought of as
sampled from a closed curve without self-intersections
(a topological circle), is in direct correspondence with
the periodicity of g as measured with windows of size
w. The resulting point cloud is then pointwise mean-
centered and normalized; that is, we replace X by

X =

{
x−mean(x)

‖x−mean(x)‖
: x ∈ X

}
This ameliorates the effects of damping and trending
in the original time series, and also makes SW1PerS
amplitude blind.

We input X into the 1-Persistent Homology algo-
rithm [26] using a fast implementation tailored specifi-
cally for sliding window point-clouds (see supplements,
Section 2). From the 1-Persistent Homology computa-
tion one can extract two numbers: 0 ≤ b ≤ d ≤

√
3,

where b measures the maximum distance from a point
x ∈ X to its nearest neighbor in X, and d measures
both how circular and wide X is. This is what we al-
luded to as measuring the shape of data and the size
of the hole in Figure 9. The pair (b, d) yields a score

s(n,m) = 1− dn − bm

3n/2

between 0 (periodic) and 1 (not periodic) for each
choice of integers n ≥ m. For this paper we use
n = m = 2, as this pair yielded the best results on
the synthetic data. We refer the reader to [25] and
Section 1 of the supplements for a more detailed dis-
cussion on the choice of the parameters M,w, the set
T ⊂ [0, 2π − w], and the mathematical underpinnings
of the method.
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Dealing with Noise

We present two denoising paradigms included in the
SW1PerS pipeline; the first operates on time series,
and the second focuses on noise at the point-cloud
level.

Simple Moving Average

Can be interpreted as a discrete version of convolution
with a step function. The input for this method is an
odd integer 2k + 1, much smaller than the number of
observations in the time series g0, . . . , gS . The result,
a locally averaged time series g̃0, . . . , g̃S , is obtained as
follows: for each s = 0, . . . , S we let ` = min{s, S −
s, k} and define

g̃s :=
gs−` + · · ·+ gs + · · ·+ gs+`

2`+ 1

Simple Moving Average often yields satisfactory re-
sults given its local nature, and that it can be applied
to time series with low time resolution (S ≥ 13). A
limitation, however, is that it can remove fine features
and peak-like behavior. Thus, we restrict k to values
so that gs−k, . . . , gs, . . . , gs+k does not span more than
a third of the window size w.

Mean-Shift

Has appeared numerous times in the statistics liter-
ature, and more recently in the work of [27]. It can
be seen as a point-cloud-level version of moving aver-
age, in which each point of the cloud is replaced by
the average of those close to it. Intuitively, this has
a tightening effect. Closeness to a point can be de-
fined as being among its q-th nearest neighbors for
some integer q, or by being no farther than ε away for
some constant ε > 0. It is the second option we use in
this paper. Since in SW1PerS the sliding window point
cloud has been pointwise mean-centered and normal-
ized, it follows that it lies on the surface of the unit
sphere in RM+1. Hence we measure distance between
two such points x,y via the angle between them and
deem them to be close b if ](x,y) < π

16 . Once each
point has been replaced by the average of those no
more than π

16 away, we proceed to pointwise normal-
izing the resulting cloud.

Availability and Supporting Data
An implementation of SW1PerS can be found at
http://cms.math.duke.edu/harer/?q=downloads
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Additional Files

Supplements — Sw1Pers Applied supp v6.pdf

The supplements file contains detailed information on several points

discussed in this paper. In particular: 1. The mathematics behind the

SW1PerS algorithm, 2.A detailed description of the fast 1-Persistent

Homology algorithm, 3. Generating functions for the synthetic data, 4. All

ROC plots from the synthetic data analysis, 5. All score distributions from

the synthetic data analysis, 6. Histograms of score distributions for

permutation test,7. Details regarding the availability and processing of the

biological data, 8. Gene lists from ChIP-chip and ChIP-seq data, 9. The

method used for filtering noise using replicates and 10. GO Enrichment

analysis.

Rankings — hughes2009-liver res.xlsx, orlando2008-wt1tp13 res.xlsx and

tu2005-evensamp res.xlsx

These three files contain the biological data sets used in this paper, as well

as the scores and rankings from all the algorithms presented here. In

addition, they include filters so that users can re-order the probes by the

score of a particular algorithm.

Top genes — top genes.zip

This zip file contains three pdf files, associated to each one of the 3 biological

data sets studied in this paper. Each file shows the full ordered list, sparkLines

included, of genes in the top 10% of rankings according to SW1PerS and

that are not present in the top 10% of the other algorithms.
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