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Abstract. The purpose of this note is to prove that the motive of the Fano surface of lines

on a smooth cubic threefold is finite-dimensional in the sense of Kimura.

1. Introduction

Let k be a field with char k 6= 2 and let X ⊂ P4 be a smooth cubic threefold. We denote

by S(X) (or just S) the Fano variety of lines in X. This is known to be a smooth, connected

projective surface of general type. It turns out that this surface possesses a great many

remarkable properties. It is known, for instance, that the Albanese map is an imbedding

i : S ↪→ A := Alb(S) and that the pull-back H2(A)
i∗−→ H2(S) is an isomorphism. In this

note, we will prove a motivic version of this isomorphism. For this, letMk denote the category

of pure Chow motives with rational coefficients and let h : Voppk 7→ Mk be the functor that

sends a smooth projective k-variety X to h(X) = (X,∆X , 0) ∈ Mk. Then, our first result is

that:

Theorem 1.1. The morphism h(i) : h(A) −→ h(S) is split-surjective.

This will show that the motive of the Fano surface is finite-dimensional in the sense of

Kimura. The primary known examples of surfaces with finite-dimensional motive are those

for which either:

(i) The Chow group of nullhomologous 0-cycles is representable.

(ii) There exists a dominant rational map from a product of smooth projective curves.

Since pg(S) > 0, Mumford’s Theorem ([15] Theorem 3.13) shows that CH2
hom(S) is not

representable. Moreover, a recent result in [14] shows that S is not dominated by a product

of curves. To the author’s knowledge, the Fano surface is the first example of a surface with

finite-dimensional motive for which neither (i) nor (ii) holds. One reason for interest in finite-

dimensionality is that if M ∈Mk is finite-dimensional, then any morphism f : M →M that

induces an isomorphism on cohomology is actually an isomorphism of motives. This will be

important to proving:

Theorem 1.2. The pull-back along the Albanese imbedding i : S ↪→ A induces an isomorphism

h2(A)
∼=−→ h2(S) in Mk.
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The plan will be as follows. We will give a proof of the Theorem 1.1, then review the notion

of finite-dimensionality for motives which will allow us to prove Theorem 1.2. In this note,

all Chow groups will be taken with rational coefficients.

Acknowledgements. The author would like to thank his advisor Prof. C. Schoen for his

patience in reading carefully several early drafts of this and for his helpful comments. He

would also like to thank Prof. B. Kahn for his enthusiasm in reading a later draft and for his

help in improving the first argument.

2. A General Principle

The following variant of the Manin principle will facilitate the proof of Theorem 1.1, as

pointed out by B. Kahn.

Proposition 2.1. Let X and Y be smooth projective connected varieties over a field k and

f ∈ Cor0(X,Y ) such that fΩ∗ : CH i(XΩ) → CH i(YΩ) is surjective for all i and every

algebraically closed extension k ⊂ Ω. Then, f is split-surjective.

This principle has appeared in the literature in various guises (see, for instance, [7] Theorems

3.5 and 3.6). However, since this exact statement is difficult to find, we give a proof below,

following [8]. We subdivide the proof into three claims:

Claim: fL∗ : CH i(XL)→ CH i(YL) is surjective for all i and every extension k ⊂ L.

Proof of Claim. Let β ∈ CH i(YL). We need to find α ∈ CH i(XL) for which fL∗(α) = β. By

assumption, fL∗ : CH i(XL)→ CH i(YL) is surjective, so there is some α ∈ CH i(XL) such that

fL∗(α) = βL. Let L′ ⊃ L be some finite Galois extension for which there is α′ ∈ CH i(XL′)

with α′
L

= α. Indeed, there is some finite extension for which this holds; since Chow groups

are unchanged by passing to a purely inseparable extension, we can assume that L′ is a

separable extension. This allows us to pass to a Galois extension. Then, let G = Gal(L′/L)

and define Tr(α′) =
1

|G|
∑
g∈G

g∗α′. By [5] Example 1.7.2.6, this yields α ∈ CH i(XL) such that

αL′ = Tr(α′). We compute:

(fL∗(α))L′ = fL′∗(αL′) = fL′∗(Tr(α′)) = Tr(fL′∗(α
′)) = Tr(βL′) = βL′

Since CH i(XL)→ CH i(XL′) is injective, it follows that fL∗(α) = β, as desired. �

Claim: (f × idZ)∗ : CH i(X × Z) → CH i(Y × Z) is surjective for all i and all smooth

projective connected varieties Z over k.

Proof of Claim. We proceed by induction on n = dim(Z). The case n = 0 is true by the

preceding claim. Assume then that the claim holds for n − 1. To prove it for n, we use the
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following commutative diagram with rows exact:

(1)

lim−→
W

CH i−c(X ×W )
(idX×jW )∗−−−−−−−→ CH i(X × Z) −−−−→ CH i(Xk(Z)) −−−−→ 0

(f×idW )∗

y (f×idZ)∗

y (fk(Z))∗

y
lim−→
W

CH i−c(Y ×W )
(idY ×jW )∗−−−−−−−→ CH i(Y × Z) −−−−→ CH i(Yk(Z)) −−−−→ 0

where k(Z) is the function field of Z, the limit ranges over smooth projective varieties W

with dim(W ) ≤ dim(Z) and morphisms jW : W → Z and c = dim(Z) − dim(W ). The

commutativity of the diagram is immediate. Once we have established the exactness of the

rows, we see that the right vertical arrow is surjective by the preceding claim. Moreover, the

surjectivity of the left vertical arrow follows by the inductive hypothesis. Then, a diagram

chase shows that the middle vertical arrow is surjective also.

What remains is to show that the rows are exact. To this end, note that the rows differ

from the usual localization sequences in that the varieties W are required to be smooth (and

are not required to be subvarieties of Z). By de Jong’s theorem on alterations, for any

closed subvariety V ⊂ Z, there exists some smooth projective W and some generically finite

morphism p : W → V . So, it suffices to show that the push-forward

CH∗(X × V )
(idX×p)∗−−−−−−→ CH∗(X ×W )

is surjective. This is a straightforward exercise in iduction which is left to the reader. �

Claim: f possesses a right-inverse.

Proof of Claim. Taking Z = Y and i = dim(Y ) in the above claim, we obtain that

CH i(Y ×X)
(idY ×f)∗−−−−−−→ CH i(Y × Y )

is surjective. So, there is some γ ∈ CH i(X × Y ) for which (idY × f)∗γ = ∆Y . Applying

Liebermann’s lemma ([5] Proposition 16.1.1) then gives

f ◦ γ = (idY × f)∗γ = ∆.

This is the desired result. �

3. Proof of Theorem 1.1

Assume that S has a k-rational point and let i : S → A be the corresponding Albanese

morphism. To prove the theorem, we need to show that the correspondence tΓi ∈ Cor0(A×S)

possesses a right-inverse. The general principle then shows that it suffices to prove that the

pull-back i∗Ω : CHj(AΩ) → CHj(SΩ) is surjective for j = 1, 2 and all algebraically closed

extensions k ⊂ Ω.

For a smooth cubic threefold X over k, S is the Hilbert scheme of X with Hilbert polynomial
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t+1. We recall the following base change compatibility for Hilbert schemes (see, for instance,

[12]); i.e., for an extension k ⊂ Ω, we have

S(XΩ) ∼= S(X)Ω

Thus, SΩ is the Fano surface of lines of XΩ. Moreover, since the Albanese is compatible with

base extension, we view iΩ : SΩ → AΩ as an Albanese map.

Proposition 3.1. For all algebraically closed extensions k ⊂ Ω, the pull-back i∗Ω : CH1(AΩ)→
CH1(SΩ) is an isomorphism.

Proof. Since iΩ : SΩ → AΩ is an Albanese map, we have Pic0(AΩ)
i∗Ω−→ Pic0(SΩ) is an isomor-

phism, and so it suffices to show that we have an isomorphism i∗Ω : NS(AΩ)Q → NS(SΩ)Q

of Néron-Severi groups. Now, let ` 6= char k. Then, H2(AΩ,Q`(1))
i∗Ω−→ H2(SΩ,Q`(1)) is an

isomorphism by [13] Proposition 4. Note that S and A may be defined over some finitely

generated field k0. Upon passing to a large enough extension of k0, we may also assume that

C possesses a model over k0 and that NS(Ck0 × Ak0)Q ∼= NS(C × A)Q (and, similarly, for

C×S). Note that this is possible because the Néron-Severi group is finitely generated. Thus,

we need to show that

NS(Ck0 ×Ak0)Q
(idC×i)∗−−−−−→∼= NS(Ck0 × Sk0)Q

For this, let G := Gal(k/k0) be the absolute Galois group and ` 6= char k. The Künneth

theorem on cohomology then gives a (G-module) isomorphism:

(2) H2(C ×A,Q`(1))
(idC×i)∗−−−−−→∼= H2(C × S,Q`(1))

The result then follows from applying the functor H0(G,−) to (2) and noting that the Tate

conjecture holds for the left-hand side (by Faltings’ theorem and the fact that k0 is a finitely

generated field). �

We have the following important result of Bloch:

Proposition 3.2 ([3] 1.7). Let S be the Fano surface of lines of a smooth cubic threefold

in P4 over an algebraically closed field of characteristic 6= 2. Then, the intersection product

CH1(S)⊗ CH1(S)
·−→ CH2(S) is surjective.

Proposition 3.3. For all algebraically closed extensions k ⊂ Ω, the pullback CH2(AΩ)
i∗Ω−→

CH2(SΩ) is surjective.



THE MOTIVE OF THE FANO SURFACE OF LINES 5

Proof. Since pull-back commutes with intersection product on Chow groups, we have the

following diagram:

(3)

CH1(AΩ)⊗ CH1(AΩ)
·−−−−→ CH2(AΩ)

i∗Ω×i
∗
Ω

y i∗Ω

y
CH1(SΩ)⊗ CH1(SΩ)

·−−−−→ CH2(SΩ)

From Corollary ??, the left vertical arrow is surjective. Since Ω is algebraically closed and SΩ

is the Fano surface of lines of XΩ, we can apply Proposition 3.2 to deduce that the bottom

horizontal arrow is also surjective.. So, the right vertical arrow is surjective, as desired. �

4. Finite-dimensionality of Motives

This section reviews the definition and properties of finite-dimensionality before proving

Theorem 1.2. Recall that the category of Chow motives Mk is a tensor category with tensor

product defined as:

(4) (X,π,m)⊗ (Y, τ, n) := (X × Y, π × τ,m+ n)

We can define an action of the symmetric group Q[Sn] → EndMk
(M⊗n) for M ∈ Mk.

Since Mk is a pseudo-Abelian category, all idempotents possess images in Mk. So, for any

idempotent in the group algebra Q[Sn], there is a corresponding motive. In particular, we

have

SymnM = Im(πsym)

∧nM = Im(πalt)
(5)

for the symmetric and the alternating representation of Sn.

Definition 4.1 (Kimura). A motive M ∈ Mk is said to be oddly finite-dimensional if

SymnM = 0 for n >> 0 and evenly finite-dimensional if ∧nM = 0 for n >> 0. M is

said to be finite-dimensional if M = M+ ⊕M−, where M+ is evenly finite-dimensional and

M− is oddly finite-dimensional.

We have the following properties of finite-dimensional motives:

Theorem 4.1 (Kimura, [9]).

(a) The motive of a smooth projective curve is finite-dimensional.

(b) If M,N ∈Mk are finite-dimensional, then so are M ⊕N and M ⊗N . Conversely, if

M ⊕N is finite-dimensional, then so are M and N .

(c) If f : M → N is split-surjective and M is finite-dimensional, then so is N .

(d) If M is finite-dimensional and the odd degree cohomology H−(M) = 0 for some Weil

cohomology H∗, then M is evenly finite-dimensional (and, similarly for oddly finite-

dimensionality).
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(e) Suppose M is evenly (or oddly) finite-dimensional. Then, for every Weil cohomology

H∗, the map EndMk
(M)→ End(H∗(M)) is injective.

As a consequence of (a), (b), the motive of any product of smooth projective curves is

finite-dimensional; from (c), so is any variety dominated by a product of curves (such as

Abelian varieties). In [6] it is demonstrated that varieties of dimension ≤ 3 have finite-

dimensional motive if CH0(X)hom is representable. (This is true, in particular, if X is a

rationally connected threefold.) Other than this, the following conjecture remains wide open.

Conjecture 4.1 (Kimura, O’Sullivan). Every motive M ∈Mk is finite-dimensional.

To prove Theorem 1.2, we will need the next two results.

Proposition 4.1 ([11] Theorem 3). Let X be a smooth projective surface. Then, there are

idempotents πi ∈ EndMk
(h(X)) satisfying the following conditions:

(i) ∆X = π0 + π1 + π2 + π3 + π4

(ii) πi ◦ πj = 0 for i 6= j

(iii) The motive hi(X) = (X,πi, 0) satisfies H∗(hi(X)) = H i(X) for any Weil cohomology

H∗.

Remark 4.1. It should be noted that the idempotents in Proposition 4.1 are not unique. Some

extra conditions (see loc. cit.) may be imposed on πi so that the resulting motives are unique

up to isomorphism.

When X is an Abelian variety of dimension g, we have the following result of Denninger

and Murre which was proved using Beauville’s Fourier transform ([2]).

Theorem 4.2 ([4] Theorem 3.1). There is a unique decomposition

(6) h(X) =

2g⊕
i=0

hi(X)

where hi(X) = (X,πi, 0) with πi idempotents satisfying:

(i) πi ◦ πj = 0 for i 6= j;

(ii) tΓn ◦ πi = ni · πi = πi ◦ tΓn for all n ∈ Z;

(iii) tπi = π2g−i.

Remark 4.2. As suggested by the notation, we have H∗(hi(X)) = H i(X).

Since the motive of an Abelian variety X is finite-dimensional and the cohomology of hi(X)

is concentrated in one degree, Theorem 4.1 implies that hi(X) is finite-dimensional of parity

i (mod 2). From Theorem 1.1 and Theorem 4.1 (c), it follows that the motive of the Fano

surface h(S) is also finite-dimensional and the summand h2(S) as in Proposition 4.1 is evenly

finite-dimensional.
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Proof of Theorem 1.2. Fix π2,S as in Proposition 4.1. We define

h2(i) = π2,S ◦ tΓi ◦ π2,A ∈ HomMk
(h2(A), h2(S))

The goal is to show that h2(i) is an isomorphism of motives. This means that we need to find

some ψ ∈ HomMk
(h2(S), h2(A)) for which

ψ ◦ h2(i) = π2,A ∈ EndMk
(h2(A)), h2(i) ◦ ψ = π2,S ∈ EndMk

(h2(S))(7)

Since h2(A) and h2(S) are evenly finite-dimensional, it suffices by Theorem 4.1 (e) to find some

such ψ for which these equalities hold cohomologically. Moreover, i∗ = h2(i)∗ : H2(A,Q`)→
H2(S,Q`) is an isomorphism for ` 6= char k. Thus, if we can find some

(8) γ ∈ CH2(S ×A)

for which γ∗ : H2(S,Q`)→ H2(A,Q`) is the inverse of i∗, we can set ψ := π2,A ◦ γ ◦ π2,S , and

this gives the desired correspondence in (7).

From [1], the image of the map S × S → A defined by (x, y) 7→ i(x) − i(y) is an ample

divisor Θ. Moreover, we have

1

3!
·Θ ∧Θ ∧Θ = [S] ∈ H6(A,Q`(3))

The Hard Lefschetz theorem then implies that ∧[S] : H2(A,Q`) → H8(A,Q`)(3) is an

isomorphism. Also, since the Lefschetz standard conjecture is true for Abelian varieties

([10] Proposition 4.3), it follows that there is a correspondence φ ∈ CH2(A × A) such

that φ∗ : H8(A,Q`) → H2(A,Q`)(−3) is the inverse of ∧[S]. The projection formula

then shows that i∗ ◦ i∗ = ∧[S] so that φ∗ ◦ i∗ ◦ i∗ is the identity on H2(A,Q`). Since

i∗ : H2(A,Q`) → H2(S,Q`) is an isomorphism, it follows that γ = φ ◦ Γi is the desired

inverse.

�
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