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Abstract. When immune cells detect foreign molecules, they secrete soluble factors that attract
other immune cells to the site of the infection. In this paper, I study numerical solutions to a model
of this behavior proposed by Kepler. In this model the soluble factors are governed by a system of
reaction-diffusion equations with sources that are centered on the cells. The motion of the model
cells is a Langevin process that is biased toward the gradient of the soluble factors. I have shown
that the solution to this system exists for all time and remains positive, the supremum is a priori
bounded and the derivatives are bounded for finite time. I have also developed a first order split
scheme for solving the reaction-diffusion stochastic system. This allows us to make use of known
first order schemes for solving the diffusion, the reaction and the stochastic differential equations
separately.
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1. Introduction. The immune system in higher organisms is composed of in-
dividual cells called leukocytes which work together to combat pathogens such as
bacteria and viruses. These cells are unique because they move throughout the body
and signal to each other in order to organize a response to an infection. Upon detect-
ing pathogens in the body, an immune cell will secrete cytokines which are proteins
that mediate communication among leukocytes and coordinate their response. Some
cytokines called chemokines direct the motion of immune cells along their concen-
tration gradient by a process known as chemotaxis. Other cytokines such as tumor
necrosis factor (TNF) recruit cells to the site of inflammation and activate immune
cells. One process by which inflamation is regulated is the shedding of cytokine recep-
tors, such as those for TNF (sTNFr). Those soluble receptors bind to the respective
cytokines and limit their activity. Based on these signals, the cells will group together
to respond to an infection. The ability of these cells to organize spatially in a timely
manner is vital to an effective immune response.

The following sections describe a mathematical model of soluble factors and im-
mune cell motion proposed in [4] and [5]. The cytokines are modeled continuously
as soluble factors governed by reaction-diffusion equations with source terms that
are centered on activated leukocytes. The motion of the immune cells is inherently
stochastic, but is biased toward the chemical gradients of the chemokines. We will
show that solutions to this system exist and describe a numerical simulation of the
model based on operator splitting. Although operator splitting is a well-known tech-
nique for solving reaction-diffusion system, there is an added degree of difficulty due
to the stochastic source terms.

1.1. Soluble Factors. Suppose Ui(x, t) is the local concentration of soluble
factor i at the position x and time t. Let xµ be the position of the center of cell µ in
the bounded domain Ω ∈ R3. Then for x ∈ Ω, the reaction-diffusion equations that
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describe the behavior of the soluble factors from [5] are

∂Ui
∂t

(x, t) =

Di∆−
N∑
j=1

rijUj(x, t)− λi

Ui(x, t) +
M∑
µ=1

Jiµ(x, t)gµ(x− xµ(t)),

(1.1)

where gµ(x) is a smoothly cut-off Gaussian with support {x : |x| < µ}. Here Di

denotes the diffusion coefficient for soluble factor Ui, rij is the rate at which Ui is
removed by interaction with Uj , and λi is the rate of removal of Ui by other factors.
The secretion of soluble factor Ui by cell µ is a Gaussian source centered at the cell
position xµ with secretion rate Jiµ. The source term in (1.1) is a sum over the M
individual cells indexed by µ. The constants Di, rij , and Jiµ are all positive.

In this paper we consider a smooth source term with compact support as opposed
to the point sources in [5] for two reasons. Point sources do not take into account the
volume of the cells which can vary in size and shape. Also, the point sources in [5] are
delta functions and we are currently unaware of any rigorous mathematical treatment
of (1.1) with this type of source. We will make use of the smoothness of the source
terms in order to show the existence of a solution.

1.2. Cell Motion. The system (1.1) is coupled with M systems of stochastic
differential equations that describe the motion of each individual cell. For each cell,
indexed by µ, we let xt ∈ R3 be the position and vt ∈ R be the velocity The motion
of each cell is a Langevin process

dxt = vtdt

dvt = [h(U(xt))− γv] dt+ σ
√
γdWt

(1.2)

where dWt is standard Brownian motion in R3. The direction of motion is random,
but biased toward the direction of the vector h(U) which depends on the local con-
centration of one or more of the soluble factors by the relation

h(U) =
N∑
i=1

χi∇Ui
h0 + |∇Ui|

. (1.3)

Here χi is the chemotactic constant that controls how much the drift is influenced by
the gradient of soluble factor Ui and h0 is the length of the gradient of Ui at which
h attains half of its maximum value. The constants γ, h0 and χi are assumed to be
positive.

1.3. Notation. Throughout we will refer to Cf (x1, x2, . . . , xn) as a constant
that depends on the function f and the values of x1, x2, . . . , xn. We also refer
to Lf (x1, x2, . . . , xn) as a Lipschitz constant for the function f that depends on
x1, x2, . . . , xn. We define Br(x) to be a ball of radius r centered at x ∈ Rn and
Cu(a, b, n) to be the hypercube in Rn that extends from a to b in every direction. For
a, b ∈ R we define a ∨ b = max(a, b) and a ∧ b = min(a, b).

Let X and Y be sets and suppose that fi : X → Y , i = 1, . . . , n. Then (f1, . . . , fn)
is an n-tuple whose components are in Y X . We shall also let (f1, . . . , fn) denote the
function from X to Y n which assigns (f1(x), f2(x), . . . fn(x)) to x ∈ X, i.e.

(f1, f2, . . . , fn)(x) = (f1(x), f2(x), . . . fn(x)).
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1.4. Overview and Main Results. In the following sections we consider the
case where Ω is a cube and the reaction-diffusion equations for the soluble factors
have periodic boundary conditions. Section 2 contains a proof that the reaction-
diffusion-stochastic system (1.1), (1.2) has a solution for a short time. We consider a
first order split scheme in §3 in order to make use of well known numerical schemes
for solving the diffusion, reaction, and stochastic differential equations for the cell
motion. In section §4, we carefully add up the local truncation error due to the
splitting using a method similar to the convergence proof of higher order numerical
schemes for stochastic differential equations by Milstein in [9]. We also find in §4
that the solution to the reaction-diffusion system with a nonnegative initial condition
is positive, the supremum is a priori bounded and that derivatives are bounded for
finite time. In addition, solutions to the reaction-diffusion-stochastic system exist for
all time.

2. Short Time Existence.

2.1. Preliminaries. Suppose the domain Ω is an open cube in Rn with side
length Λ. Let Zn be the set of integer frequencies ω = (ω1, . . . , ωn) and define |ω|∞ =
max |ωi|. Let A(k, n) be the set of multi-indices α = (α1, α2, . . . αn) such that

w(α) =
n∑
i=1

|αi| ≤ k.

Let E be the vector space of smooth Λ-periodic complex valued functions on Rn.
For each ω ∈ Zn define Eω(x) ∈ E by

Eω(x) = Λ−n
2 e

i2ω·x
Λ , x ∈ Ω. (2.1)

For a locally integrable function f define the Fourier coefficient

cω(f) =
∫

Ω

f(x)Eω(x)dx. (2.2)

For s ∈ R and a locally integrable function f , let ‖f‖s ∈ [0,∞] be such that

‖f‖2s =
∑
ω∈Zn

(1 + |ω|2∞)s|cω(f)|2. (2.3)

Definition 2.1. For s ≥ 0, define Hs to be the space of measurable, Λ-periodic,
complex valued functions f on Ω ⊂ Rn such that ‖f‖s <∞.

Remark 2.2. If k > n
2 , then corresponding to any element f ∈ Hk is a continuous

function g ∈ Hk such that f = g almost everywhere. We may therefore assume
when k > n

2 that the elements of Hk are continuous. It is well known that the set
{f ∈ Hk : f is continuous} is a Hilbert space with respect to ‖·‖k.
A proof of the following proposition is given in [2].

Proposition 2.3. Suppose f ∈ Hk. For any α ≤ k, there exists gα ∈ Hk−w(α)

such that ∫
Ω

f(x)∂αφ(x)dx = (−1)w(α)

∫
Ω

gαφ(x)dx, φ ∈ E . (2.4)

Let gα satisfy the conditions above. Then

‖f‖2k =
∑

w(α)≤k

‖gα‖20 . (2.5)
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The following lemma is useful throughout and the proof is also found in [2].
Lemma 2.4 (Sobolev’s Lemma). Let k > n

2 + l. Then

sup
w(α)≤l

|∂αf(x)| ≤ C(k, l) ‖f‖k . (2.6)

Remark 2.5. Note that f ∈ Hk+l if and only if ∂αf ∈ Hk for w(α) ≤ l.
Define the linear map ∆ : H4 → H2 by

∆f =
3∑
i=1

(
∂

∂xi

)2

f.

Then for s ≥ 4, ‖(1−∆)(f)‖s = ‖f‖s+2 , since

(1−∆)f =
∑
ω∈Zn

cω(f)
(

1− ∂2

∂xi2

)
Eω(x) =

∑
ω∈Zn

cω(f)(1 + |ω|2)Eω(x).

Let HN
k be the space of N -tuples u = (u1, u2, . . . , uN ) such that ui ∈ Hk for

i = 1, 2 . . . , N and set

‖u‖k =

(
N∑
i=1

‖ui‖2k

) 1
2

. (2.7)

By our convention (u1, . . . , uN )(x) = (u1(x), . . . , uN (x)). Define D : HN
4 → HN

2 by

D(u) = (D1∆u1, D2∆u2, . . . , DN∆uN ) (2.8)

where Di > 0 for i = 1, 2 . . . , N . We now define the fundamental solution of the
diffusion equation. For each t > 0, define the linear map Kt,i : Hk → E by

Kt,i(ui) =
∑
ω∈Zn

e−
2Di|w|2t

Λ cα(ui)Eω. (2.9)

Then

d

dt
Kt,i(ui) = Di∆Kt,i(ui) = Kt,i(Di∆ui),

For t > 0 define Kt : HN
k → EN by

Kt(u) =
(
Kt,1(u1),Kt,2(u2), . . . ,Kt,N (uN )

)
, (2.10)

and note that

d

dt
Kt(u) = D(Kt(u)) = Kt(D(u)). (2.11)

It also follows that

‖Ktui‖s ≤ ‖ui‖s , i = 1, 2, . . . , N, and ‖Ktu‖s ≤ ‖u‖s . (2.12)

Below we define the space of solutions to the reaction-diffusion equations (1.1).
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Definition 2.6. For any integer k > n
2 , let BN

k (m1,m2) be the set of N -tuples
u ∈ HN

k such that sup |u| ≤ m1 and ‖u‖k ≤ m2. Note that

HN
k =

⋃
0≤m1,m2<∞

BN
k (m1,m2).

Remark 2.7. If u ∈ BN
k (m1,m2) and t > 0, then sup |Kt(u)| ≤ sup |u|.

Definition 2.8. For any integer k > n
2 , let CN

k,T (m1,m2) be the set of functions
U : [0, T ] → BN

k (m1,m2) that are continuous with respect to ‖·‖k. Then define

‖U‖k,T = sup
0≤t≤T

‖U(t)‖k . (2.13)

Also, let

CN
k,T =

⋃
0≤m1,m2<∞

CN
k,T (m1,m2).

Below we define the space of solutions to the stochastic differential equations (1.2).
Definition 2.9. Suppose T > 0 and m > 0. Define ST (m) to be the space of

continuous stochastic processes such that the norm

‖Xt‖ST
=
(

E
[

sup
0≤t≤T

|Xt|2
]) 1

2

≤ m. (2.14)

We now define the space of functions which will contain the solutions to the
reaction-diffusion-stochastic system (1.1),(1.2).

Definition 2.10. For any integer k > n
2 , let BNk (m1,m2,m3) be the space of

ordered pairs φ = (u, ξ) where u ∈ BN
k (m1,m2) and ξ is a random variable such that

E
[
|ξ|2
] 1

2 ≤ m3. Then define

|||φ|||k = E
[
‖u‖2k + |ξ|2

] 1
2
. (2.15)

Definition 2.11. For any integer k > n
2 and T > 0, let CNk,T (M1,M2,M3) be

the Cartesian product of CN
k,T (M1,M2) and ST (M3). Define the norm |||·|||k,T by

|||(U,X)|||k,T = E
[

sup
0≤t≤T

(
‖U(t)‖2k + |Xt|2

)] 1
2

. (2.16)

Since our space of solutions is periodic, we must define the Gaussian source terms
to be periodic as well. Let g : Rn → R be a mean zero Gaussian with standard
deviation µ. Define gµ,i to be the periodification of gµ, i.e.

gµ,i(x) =
∑
j∈Z

gµ

(
x− 2πj

Λ

)
. (2.17)

Let J̄i > 0 for i = 1, 2, . . . , N and J = max{J̄i : i = 1, 2, . . . , N}. Then let ε > 0 and
Ji : Rn → R be a smooth cutoff defined by

J(X) =

{
J̄i X ∈ Cu(−Λ

2 + ε, Λ
2 − ε)

0 X /∈ Cu(−Λ
2 ,

Λ
2 )
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Then define g : Rn × Rn → RN by

g(X,x) = (J1(X)g1(x), . . . , JN (X)gN (x)). (2.18)

Let T > 0, (U,X) ∈ CNk,T and Tx be translation by x ∈ Rn. Throughout we will
consider the reaction-diffusion-stochastic system with one cell,

dU

dt
= DU(t) + f(U)(t) + g(Xt) ◦ TXt , 0 < t < T,

dXt = a(U(Xt), Xt)dt+ b(Xt)dWt, 0 < t < T,

(U,X)(0) = (u, ξ)

(2.19)

where u ∈ HN
k and ξ ∈ Rn. We will usually consider the case where n = 3.

Remark 2.12. We compose g with TXt so that the Gaussian source term is
centered on the position of the cell. If the cell leaves the domain, then the cutoff J
restricts the source term g from contributing to the reaction-diffusion equation. Since
Ji is a function of X, g is still periodic in x.

2.2. Estimates for the Reaction-Diffusion Equations. The following the-
orem provides estimates for the reaction terms f(u).

Theorem 2.13. Let N be a positive integer and f : RN → RN be a smooth
function such that f(0) = 0. Suppose 0 ≤ m1,m2 < ∞, k is a nonnegative integer
and u, v ∈ BN

k (m1,m2). Then

|f(u)| ≤ cf,1(m1) |u| , (2.20)

‖f(u)‖k ≤ Cf,k(m1) ‖u‖k , (2.21)

where

cf,k(m1) = sup
{∣∣∣∣( ∂

∂u

)α
f(u)

∣∣∣∣ : w(α) ≤ k, u ∈ RN and |u| ≤ m1

}
, (2.22)

Cf,k(m1) = C(k,N)cf,max{1,k}(m1)(1 +m1)max{0,k−1}). (2.23)

Let k = 0 or k > n
2 . Then we also have

‖f(u)− f(v)‖k ≤ Lf,k(m1,m2) ‖u− v‖k (2.24)

where

Lf,0(m1) = cf,1(m1),

Lf,k(m1,m2) = C(k,N)cf,k+1(m1)(1 +m1)k−1m2.
(2.25)

Proof. By the Fundamental Theorem of Calculus,

f(u)− f(v) =
∫ 1

0

d

dt
f((1− t)v + tu)dt

=
(∫ 1

0

∂f
(
(1− t)v + tu

) d
dt

((1− t)v + tu)dt
)

=
(∫ 1

0

∂f
(
(1− t)v + tu

)
dt

)
(u− v).
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It follows by the Cauchy-Schwarz inequality that

‖f(u)− f(v)‖0 ≤ cf,1(m1) ‖u− v‖0

and for v = 0,

|f(u)| ≤ cf,1(m1) |u| and ‖f(u)‖0 ≤ cf,1(m1) ‖u‖0 .

Let k be a positive integer. Using well known arguments found in [11], §13.3, there
exist constants C(k,N) and C(k) such that

‖f(u)‖k ≤ C(k,N)cf,k(m1)(1 +m1)k−1 ‖u‖k , (2.26)

and

‖u1u2‖k ≤ C(k) (‖u1‖k ‖u2‖∞ + ‖u1‖∞ ‖u2‖k) . (2.27)

Then (2.21) immediately follows from (2.26). Let u1 =
∫ 1

0
∂f
(
(1 − t)v + tu

)
dt and

u2 = u− v. Then by (2.26),

‖u1‖k ≤ C(k + 1, N)cf,k+1(m1)(1 +m1)k(‖u‖k ∨ ‖v‖k).

We also have ‖u1‖∞ ≤ cf,1(m1). The Sobolev Lemma gives us

‖u− v‖∞ ≤ C(k) ‖u− v‖k .

Finally, by (2.27)

‖f(u)− f(v)‖k =
∥∥∥∥(∫ 1

0

∂f
(
(1− t)v + tu

)
dt

)
(u− v)

∥∥∥∥
k

≤ C(k + 1, N)cf,k+1(m1)(1 +m1)k(‖u‖k ∨ ‖v‖k) ‖u− v‖k

which proves (2.24).
Remark 2.14. If k > n

2 , then we can apply the Sobolev Lemma to equations
(2.21) and (2.24) The resulting bounds are

‖f(u)‖k ≤ Cf,k(m2), (2.28)
‖f(u)− f(v)‖k ≤ Lf,k(m2) ‖u− v‖k . (2.29)

The following estimates on the source terms g can be easily obtained.
Lemma 2.15. Let g be given by (2.18). Then for an integer k ≥ 0, there exist

constants Cg, Cg,k and Lg,k such that

|g ◦ Ty| ≤ Cg, ‖g ◦ Ty‖k ≤ Cg,k and ‖g ◦ Ty − g ◦ Tz‖k ≤ Lg,k|y − z|. (2.30)

2.3. Estimates for the Cell Motion. Let Xt = (xt, vt) and

a(U,Xt) =
(

vt
h(U)− γvt

)
and b(Xt) =

(
0 0
0 σ

√
γ

)
. (2.31)
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It is immediately clear that b is Lipschitz in X and bounded. Recall that a depends
on U(Xt) by the relation

h(U(Xt)) =
N∑
i=1

χi∇Ui(xt)
1 + |∇Ui(xt))|

. (2.32)

Since h(U) is bounded by N(max1≤i≤N χi),

|a(u(X), X)| ≤ Ca(m), X ∈ ST (m). (2.33)

Using the Sobolev Lemma we can show that a is Lipschitz in both u and X.
Lemma 2.16. The drift a(u(X), X) is Lipschitz in u and X, i.e. there exist

constants La,1(M2) and La,2(M2) such that

|a(u(X), X)− a(v(Y ), Y )| ≤ La,1(M2) ‖u− v‖3 + La,2(M2) |X − Y | (2.34)

for u, v ∈ BN
4 (M1,M2).

The proof of this lemma depends on the fact that the supremum is bounded by
the Hs norm for s > 3

2 in three dimensions. Therefore, the supremum of the difference
between u and v ∈ BN4 is bounded by the H3 norm and a Lipschitz constant for ∇u
is ‖u‖4. Also ∇u is Lipschitz in x with a constant depending on ‖u‖4.

The following facts about stochastic integrals from [8] and [10] are useful through-
out.

Definition 2.17. Let M2([t1, t2],Rn) be the space of measurable, Ft adapted
processes f : [t1, t2] → Rn such that

E
[∫ t2

t1

|f(t, ω)|2dt
]
<∞.

Proposition 2.18 (Itô Isometry). Let f ∈M2([t1, t2],Rn). Then

E

[∣∣∣∣∫ t2

t1

f(t, ω)dWt

∣∣∣∣2
]

= E
[∫ t2

t1

|f(t, ω)|2dt
]
. (2.35)

Proposition 2.19 (Doob’s Martingale Inequality for Stochastic Integrals). Let
f ∈M2([0, T ],Rn). Then

∫ t
0
f(τ, ω)dWτ is a martingale and

E

[
sup

0≤t≤T

∣∣∣∣∣
∫ T

0

f(τ, ω)dWτ

∣∣∣∣∣
p]
≤ p

p− 1
E

[∣∣∣∣∣
∫ T

0

f(τ, ω)dWτ

∣∣∣∣∣
p]
. (2.36)

2.4. Short Time Existence. We now set up a contraction to show existence
of a solution to (2.19) for a short time. Let F : CN

k,T × Rn ×HN
k → CN

k,T be defined
by

F (U,X, u)(t) = Kt(u) +
∫ t

0

Kt−τ (f(U) + g ◦ TXτ )dτ (2.37)

and G : Ck,t × Rn → Rn be defined by

G(U,X, ξ)(t) = ξ +
∫ t

0

a(U(Xτ , τ), Xτ )dτ +
∫ t

0

b(Xτ )dWτ . (2.38)
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Then define

H(U,X, u, ξ)(t) =
(
F (U,X, u)(t), G(U,X, ξ)(t)

)
(2.39)

for X, ξ ∈ Rn, U ∈ CN
k,T and u ∈ HN

k .
To show H is a contraction, we first let 0 ≤ m1 ≤ M1 <∞, 0 ≤ m2 ≤ M2 <∞,

and 0 ≤ m3 ≤M3 <∞. For an integer k ≥ 4, assume that u ∈ BN
k (m1,m2), |ξ| ≤ m3

and (U,X), (V, Y ) ∈ CNk,T (M1,M2,M3). Then by (2.22),

sup
0≤t≤T

|F (U,X, u)| = sup
0≤t≤T

∣∣∣∣Kt(u) +
∫ t

0

Kt−τ (f(U))dτ +
∫ t

0

Kt−τ (g)dτ
∣∣∣∣

≤ |Kt(u)|+ sup
0≤t≤T

∣∣∣∣∫ t

0

Kt−τ (f(U))dτ
∣∣∣∣+ sup

0≤t≤T

∣∣∣∣∫ t

0

Kt−τ (g)dτ
∣∣∣∣

≤ m1 + sup
0≤t≤T

∫ t

0

|Kt−τ (f(U))| dτ + sup
0≤t≤T

∫ t

0

|Kt−τ (g)| dτ

≤ m1 +
∫ T

0

|f(U)| dτ +
∫ T

0

|g| dτ

≤ m1 + T [cf,1(M1)M1 + Cg].

Also by (2.23) and (2.30),

‖F (U,X, u)‖k,T = sup
0≤t≤T

∥∥∥∥Kt(u) +
∫ t

0

Kt−τ (f(U))dτ +
∫ t

0

Kt−τ (g)dτ
∥∥∥∥
k

≤ sup
0≤t≤T

[
‖Kt(u)‖k +

∥∥∥∥∫ t

0

Kt−τ (f(U))dτ
∥∥∥∥
k

+
∥∥∥∥∫ t

0

Kt−τ (g)dτ
∥∥∥∥
k

]
≤ m2 + sup

0≤t≤T

∫ t

0

‖Kt−τ (f(U))‖k dτ + sup
0≤t≤T

∫ t

0

‖Kt−τ (g)‖k dτ

≤ m2 +
∫ T

0

‖f(U)‖k dτ +
∫ T

0

‖g‖k dτ

≤ m2 + T [Cf,k(M1)M2 + Cg,k].

Finally,

‖G(U,X, ξ)‖2ST
= E

[
sup

0≤t≤T
|G(U,X, ξ)(t)|2

]
= E

[
sup

0≤t≤T

∣∣∣∣ξ +
∫ t

0

a(U(Xs, s), Xs)ds+
∫ t

0

b(Xs)dWs

∣∣∣∣2
]

≤ 3|ξ|2 + 3E

[
sup

0≤t≤T

(∣∣∣∣∫ t

0

a(U(Xs, s), Xs)ds
∣∣∣∣2 +

∣∣∣∣∫ t

0

b(Xs)dWs

∣∣∣∣2
)]

≤ 3m2
3 + 3E

 sup
0≤t≤T

t

∫ t

0

|a(U(Xs, s), Xs)ds|2 + 4

∣∣∣∣∣
∫ T

0

b(Xs)dWs

∣∣∣∣∣
2


by the Cauchy-Schwarz inequality and Doob’s martingale inequality. Then by the Itô
Isometry,

‖G(U,X, ξ)(t)‖2ST
≤ 3(m3 + T 2Ca(M3) + 4CbT ).
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Therefore, we can also choose T such that

sup
0≤t≤T

|F (U,X, u)| ≤M1, ‖F (U,X, u)‖k,T ≤M2, and ‖G(U,X, ξ)‖ST
≤M3.

Thus, H takes CNk,T (M1,M2,M3)×BN
k (m1,m2)×Bm3(0) into CNk,T (M1,M2,M3).

Next we show that H is Lipschitz with respect to the norm |||·|||k,T . By (2.24),

‖F (U,X, u)(t)− F (V, Y, u)(t)‖k

=
∥∥∥∥∫ t

0

Kt−τ (f(U(τ))− f(V (τ)))dτ +
∫ t

0

(g ◦ TXτ
− g ◦ TYτ

) dτ
∥∥∥∥
k

≤
∫ t

0

‖f(U(τ))− f(V (τ))‖k dτ +
∫ t

0

‖g ◦ TXτ − g ◦ TYτ ‖k dτ

≤ Lf,k(M1,M2)
∫ t

0

‖U(τ)− V (τ)‖k dτ + Lg,k

∫ t

0

|Xτ − Yτ | dτ.

By the Cauchy-Schwarz inequality,

E
[
‖F (U,X, u)− F (V, Y, u)‖2k,T

]
= E

[
sup

0≤t≤T

(
Lf,k(M1,M2)

∫ t

0

‖U(τ)− V (τ)‖k dτ + Lg,k

∫ t

0

|Xτ − Yτ | dτ
)2
]

≤ 2 E

[
sup

0≤t≤T
Lf,k(M1,M2)2

(∫ t

0

‖U(τ)− V (τ)‖k dτ
)2

+ L2
g,k

(∫ T

0

|Xτ − Yτ | dτ

)2


≤ 2T E

[
Lf,k(M1,M2)2

∫ T

0

‖U(τ)− V (τ)‖2k dτ + L2
g,k

∫ T

0

|Xτ − Yτ |2 dτ

]

≤ 2T 2 E
[
Lf,k(M1,M2)2 ‖U(τ)− V (τ)‖2k + L2

g,k sup
0≤t≤T

|Xτ − Yτ |2
]

≤ T 2LF,k(M1,M2)2 |||(U,X)− (V, Y )|||2k,T

where LF (M2)2 = 2max{L2
f,k(M2), Lg,k}. Define

ã(U(t), Xt, V (t), Yt) = a(U(Xt, t), Xt)− a(V (Yt, t), Yt),

b̃(Xt, Yt) = b(Xt)− b(Yt).

Then by Lemma 2.16,

‖G(U,X, ξ)(t)−G(V, Y, ξ)(t)‖2ST
= E

[
sup

0≤t≤T
|G(U,X, ξ)(t)−G(V, Y, ξ)(t)|2

]
= E

[
sup

0≤t≤T

∣∣∣∣∫ t

0

ã(U(τ), Xτ , V (τ), Yτ )dτ +
∫ t

0

b̃(Xτ , Yτ )dWτ

∣∣∣∣2
]

≤ 2E

[
sup

0≤t≤T

∣∣∣∣∫ t

0

ã(U(τ), Xτ , V (τ), Yτ )dτ
∣∣∣∣2 + sup

0≤t≤T

∣∣∣∣∫ t

0

b̃(Xτ , Yτ )dWτ

∣∣∣∣2
]



Operator Splitting for an Immunology Model 11

≤ 2E

 sup
0≤t≤T

t

∫ T

0

|ã(U(τ), Xτ , V (τ), Yτ )|2 dτ + 4

∣∣∣∣∣
∫ T

0

b̃(Xτ , Yτ )dWτ

∣∣∣∣∣
2


≤ 2E

[
T

∫ T

0

|ã(U(τ), Xτ , V (τ), Yτ )|2 dτ + 4
∫ T

0

∣∣∣b̃(Xτ , Yτ )
∣∣∣2 dτ]

≤ 2TE

[
TLa,1(M2) ‖U(t)− V (t)‖k +

(
TLa,2(M2)2 + 4L2

b

)
sup

0≤t≤T
|Xt − Yt|2

]
≤ TLG,k(M2,M3)2 |||(U,X)− (V, Y )|||2k,T

where LG,k(M2,M3)2 = 2max{TLa,1(M2), TLa,2(M2)2 + 4L2
b)}. Thus,

|||H(U,X, u, ξ)−H(V, Y, u, ξ)|||2k,T ≤ L2
H,k |||(U,X)− (V, Y )|||2k,T (2.40)

where L2
H,k = LH,k(M1,M2,M3)2 = T max{TLF,k(M1,M2)2, LG,k(M2,M3)2}. Thus,

H is a contraction for T < LH,k(M1,M2,M3)−1. Given (U,X)(0) = (u, ξ) it follows
that there is a unique (U,X) ∈ CNk,T (M1,M2,M3) such that H(U,X, u, ξ) = (U,X).

Remark 2.20. Let k ≥ 0, (U,X), (V, Y ) ∈ CN4,T (M1,M2,M3) and (u, ξ) ∈
BN4 (M1,M2,M3). Using the same argument as above, we also have the estimate

|||H(U,X, u, ξ)−H(V, Y, u, ξ)|||2k,T ≤ LH,k∨3 |||(U,X)− (V, Y )|||k∨3,T . (2.41)

The next lemma is the basis of the error estimates that follow.
Lemma 2.21. Let k be a nonnegative integer, (U,X), (V, Y ) ∈ CN4,T (M1,M2,M3)

and H(U,X, u, ξ) = (U,X). Then

|||(U,X)− (V, Y )|||k,T ≤
1

1− LH,k
|||H(V, Y, u, ξ)− (V, Y )|||k∨3,T (2.42)

provided that LH,k = LH,k(M1,M2,M3) < 1.
Proof. Since H(U,X, u, ξ) = (U,X),

|||(U,X)− (V, Y )|||k,T = |||H(U,X, u, ξ)−H(V, Y, u, ξ) +H(V, Y, u, ξ)− (V, Y )|||k,T
≤ |||H(U,X, u, ξ)−H(V, Y, u, ξ)|||k,T + |||H(V, Y, u, ξ)− (V, Y )|||k,T
≤ LH,k(M1,M2,M3) |||(U,X)− (V, Y )|||k∨3,T + |||H(V, Y, u, ξ)− (V, Y )|||k∨3,T

from which (2.42) immediately follows.

3. Operator Splitting. In this section we will apply operator splitting to the
reaction-diffusion stochastic system (2.19). This will aid in both proving the existence
of long time solutions and solving the system numerically.

3.1. Taylor Expansions. In order to analyze the error due to operator splitting,
we introduce some notation. Suppose X and Y are normed vector spaces. Let f be
a J times continuously differentiable function mapping an open convex subset A of
X into Y . For each j = 0, 1, . . . , J we let f [j] be the j-th differential of f . Thus, for
each a ∈ A, f (j)(a) is a jth degree polynomial function on X whose value at v ∈ X is(

d

dt

)j
f(a+ tv)|t=0.



12 T. A. Lucas

Let f{J} be the function on A × A whose value at (a, b) ∈ A × A is the J-th degree
polynomial function on X whose value at v ∈ X is∫ 1

0

f [j](a+ λ(b− a)(v)d(1− λ)N .

Taylor’s Theorem implies that

f(b) =
J−1∑
j=0

f [j](a)(b− a) +
1
J !
f{J}(a, b)(b− a), (a, b) ∈ A×A.

Suppose B is an open subset of X × [0,∞) with the property that if b ∈ B
then {t : (b, t) ∈ B} is an interval containing 0. Let f be a J times continuously
differentiable function mapping B into Y . For each j = 0, 1, . . . , J let

f (j)(b) =
(
d

dt

)j
f(b, t)

∣∣
t=0

, b ∈ B

and

f<J>(b, t) =
∫ 1

0

(
d

dλ

)J
f(λb)d(1− λ)N .

Then Taylor’s Theorem implies that

f(b, t) =
J−1∑
j=0

tj

j!
f (j)(b) +

tJ

J !
f<J>(b, t).

3.2. Ordinary Differential Equations. Let f : RN → RN be smooth. Sup-
pose R is the flow of f , i.e. the set of ((t, u0), u1) ∈ R × RN such that either t = 0
and u0 = u1 or t 6= 0 and there is a continuously differentiable function R carrying
an open interval I with {0, t} ⊂ I into G such that

d

dτ
R(τ) = f(R(τ)) for τ ∈ I.

It is well known that R is a function; the domain of R is an open subset of R × RN
which contains {0} × RN ; and that R is smooth. We shall assume for convenience
that the domain of R is all of R×RN ; it is a straightforward matter to modify what
follows to obtain essentially the same results if this is not the case. It follows that

R(0, u) = u,
∂

∂t
R(t, u) = f(R(t, u)) whenever (t, u) ∈ G. (3.1)

It is easy to show that

R(0)(u) = u, R(1)(u) = f(u), R(2)(u) = f [1](u)(f(u)), u ∈ RN . (3.2)

We shall abbreviate R(t, u) by Rt(u).
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3.3. A First Order Split Scheme. We can decouple the system (2.19) into
three separate systems for the diffusion, reaction and motion of the cells, i.e.

dU

dt
= D(U) + g ◦ Tξ, U(0) = u, (3.3)

dU

dt
= f(U), U(0) = u, (3.4)

dXt = a(u,Xt)dt+ b(Xt)dWt, X(0) = ξ. (3.5)

Let F,G and H be defined by (2.37), (2.38) and (2.39), respectively. Let Kt be
defined by (2.10) and define

Lt(u, ξ) = Kt(u) +
∫ t

0

Kt−τ (g ◦ Tξ)dτ. (3.6)

It follows from (2.11) that Lt(u, ξ) solves the inhomogeneous diffusion equation (3.3).
Then let

Mt

(
u

ξ

)
=
(
Lt(u, ξ)

ξ

)
.

Let Rt be the flow of (3.4) as defined by (3.1) and

St

(
u

ξ

)
=
(
Rt(u, ξ)

ξ

)
.

Finally, let Yt(u, ξ) be the solution of (3.5) given by

Yt(ξ, u) = ξ +
∫ t

0

a(u, Yτ )dτ +
∫ t

0

b(Yτ )dWτ (3.7)

and define

Zt

(
u

ξ

)
=
(

u

Yt(u, ξ)

)
.

Then a split-step method to approximate (2.19) is

Ψt(u, ξ) = Zt(St (Mt (u, ξ)) . (3.8)

The next theorem shows that the local truncation error for the split scheme Ψt

is O(t
3
2 ). In §4 we will show that the global error is O(t).

Definition 3.1. For φ = (u, ξ) ∈ Bk(m1,m2,m3) define

|φ|k = |E [‖u‖k + ξ]| . (3.9)

Theorem 3.2. Let (U,X) be the solution of (2.19) on [0, T ) where (U,X)(0) =
(u, ξ) ∈ CN

k,T . Let the error due to the split scheme (3.8) be given by

e(t) = (U,X)(t)−Ψt(u, ξ).

Then for a nonnegative integer k,

sup
0≤t≤T

|e(t)|k ≤ C(sup |u|, ‖u‖(k+2)∨3)T
2. (3.10)
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and

|||e|||k,T ≤ C(sup |u|, ‖u‖(k+2)∨3)T
3
2 . (3.11)

Proof. Using Lemma 2.21, we estimate the error for the splitting Ψ by estimating
the difference between H(Ψt(u, ξ), u, ξ) and Ψt(u, ξ), i.e

|||e(t)|||k,T ≤ |||H(Ψt(u, ξ), u, ξ)−Ψt(u, ξ)|||k∨3,T

= E
[

sup
0≤t≤T

{
‖e1(t)‖2k∨3 + |e2(t)|2

}] 1
2

where

e1(t) = F

(
Ψt

(
u

ξ

)
, u

)
−Rt(Lt(u, ξ)),

e2(t) = G

(
Ψt

(
u

ξ

)
, ξ

)
− Yt(Rt(Lt(u, ξ)), ξ).

We immediately see from the definitions of G and Yt that e2(t) = 0.
We shall now examine e1(t). By the definition of F ,

e1(t) = Kt(u) +
∫ t

0

Kt−τf(Rτ (Lτ (u, ξ)))dτ

+
∫ t

0

Kt−τ
(
g ◦ TYτ (Rτ (Lτ (u,ξ)),ξ)

)
dτ −Rt(Lt(u, ξ)).

We proceed using Taylor expansions. A second order expansion of Rt is

Rt(Lt(u, ξ)) = Lt(u, ξ) + tR
(1)
t (Lt(u, ξ)) +

t2

2
R<2>(t, Lt(u, ξ))

= Kt(u) +
∫ t

0

Kt−τ
(
g ◦ TYτ (u,ξ)

)
dτ

+ tf(Lt(u, ξ)) +
t2

2
R<2>(t, Lt(u, ξ))

Substituting the above expansion,

e1(t) = e11(t) + e12(t)−
t2

2
R<2>(t, Lt(u, ξ)).

where

e11(t) =
∫ t

0

Kt−τf(Rτ (Lτ (u, ξ)))dτ − tf(Lt(u, ξ)),

e12(t) =
∫ t

0

Kt−τ
(
g ◦ TYτ (Rτ (Lτ (u,ξ)),ξ)

)
dτ −

∫ t

0

Kt−τ (g ◦ Tξ) dτ.

A first order Taylor expansion of f is given by

f(x+ h) = f(x) + f{1}(x, x+ h)(h).
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If we substitute a first order Taylor expansion of Rτ in f(Rτ (Lτ (u, ξ))), then

f(Rτ (Lτ (u, ξ))) = f
(
Lτ (u, ξ)

)
+ f{1}

(
Lτ (u, ξ), Rτ (Lτ (u, ξ)

)(
τR<1>(τ, Lτ (u, ξ))

)
Thus,

e11(t) =
∫ t

0

Kt−τf(Lτ (u, ξ))dτ − tf(Lt(u, ξ)) +Rt(u, ξ),

where the remainder term

Rt(u, ξ) =
∫ t

0

Kt−τf
{1}(Lτ (u, ξ), Rτ (Lτ (u, ξ))(τR<1>(τ, Lτ (u, ξ))

)
dτ

is O(t2). Let η(τ) = Kt−τf(Lτ (u, ξ)). Then

‖e11(t)‖k =
∥∥∥∥∫ t

0

η(τ)dτ − tη(t)
∥∥∥∥
k

≤
∫ t

0

‖η(τ)− η(t)‖k dτ

≤
∫ t

0

‖η′(τ)‖k |t− τ |dτ = sup
0≤τ≤t

‖η′(τ)‖k
t2

2
.

Then by Theorem 2.13 and Lemma 2.15,

‖η′(τ)‖k =
∥∥∥∥ ∂∂τ Kt−τf(Lτ (u, ξ))

∥∥∥∥
k

= ‖DKt−τf(Lτ (u, ξ))‖k

≤ ‖f(Lτ (u, ξ))‖k+2 ≤ Cf,k(sup |u|) ‖Lτ (u, ξ)‖k+2

≤ Cf,k(sup |u|)
∥∥∥∥Kt(u) +

∫ t

0

Kt−τ (g ◦ Tξ) dτ
∥∥∥∥
k+2

≤ Cf,k(sup |u|)
(
‖u‖k+2 + Cg,k+2

)
.

Therefore,

‖e11‖k ≤ Cf,k(sup |u|, ‖u‖k+2)t
2 (3.12)

Using (2.12) and Corollary 2.15,

‖e12(t)‖k ≤
∫ t

0

∥∥Kt−τ
(
g ◦ TYτ (Rτ (Lτ (u,ξ)),ξ) − g ◦ TYτ (u,ξ)

)∥∥
k
dτ

≤
∫ t

0

∥∥g ◦ TYτ (Rτ (Lτ (u,ξ)),ξ) − g ◦ Tξ
∥∥
k
dτ

≤ Lg,k

∫ t

0

|Yτ (Rτ (Lτ (u, ξ)), ξ)− ξ| dτ.

≤ Lg,k

∫ t

0

∫ τ

0

|a(Rs(Ls(u, ξ)), ξ)| dsdτ +
∫ t

0

∣∣∣∣∫ τ

0

b(ξ)dWs

∣∣∣∣ dτ
Since the expectation of the Itô integral is always zero,

E
[

sup
0≤t≤T

‖e12(t)‖k

]
≤ Lg,kE

[
sup

0≤t≤T

∫ t

0

∫ τ

0

|a(Rs(Ls(u, ξ)), ξ)dsdτ |
]

+ Lg,kE
[

sup
0≤t≤T

∫ t

0

∣∣∣∣∫ τ

0

b(ξ)dWs

∣∣∣∣ dτ]
≤ 1

4
Lg,kCa(ξ)T 2. (3.13)
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By the Cauchy-Schwarz Inequality, Doob’s martingale inequality and the Itô Isometry,

E
[

sup
0≤t≤T

‖e12(t)‖2k

]
≤ 2Lg,k

(
E

[
sup

0≤t≤T

(∫ t

0

∫ τ

0

|a(Rs(Ls(u, ξ)), ξ)dsdτ |
)2
])

+ E

[
sup

0≤t≤T

(∫ t

0

∣∣∣∣∫ τ

0

b(ξ)dWs

∣∣∣∣ dτ)2
]

≤ 2Lg,k

(
1
4
C2
a(ξ)T

4 + 4TE
[

sup
0≤t≤T

∫ t

0

∫ τ

0

|b(ξ)|2dsdτ
])

≤ 2Lg,k

(
1
4
C2
a(ξ)T

4 + 2C2
bT

3

)
(3.14)

Combining (3.12) and (3.13),

E
[

sup
0≤t≤T

‖e1(t)‖k

]
≤ C(sup |u|, ‖u‖(k+2))T

2. (3.15)

From (3.12) and (3.14) we have

E
[

sup
0≤t≤T

‖e1(t)‖2k

] 1
2

≤ C(sup |u|, ‖u‖(k+2))T
3
2 . (3.16)

Equations (3.10) and (3.11) follow from (3.15), (3.16) and the fact that e2(t) = 0.

4. Convergence and Long Time Existence. In this section we will prove long
time existence by first showing that the splitting outlined in Section 4 converges to the
true solution. As a consequence, the reaction-diffusion equations preserve positivity.
It follows that the supremum of the solution is a priori bounded and its derivatives
are bounded for finite time. Assuming the solutions to (2.19) exists for t ∈ [0, T ), the
limit as t approaches T also exists, allowing us to solve (2.19) for further time.

4.1. Preliminaries. Suppose k ≥ 4, t ∈ [0,∞) and
φ = (u, ξ) ∈ BNk (m1,m2,m3) for 0 ≤ m1,m2,m3 <∞. Let

Φ(t, φ, δ) = (U(t, φ, δ), X(t, φ, δ)) (4.1)

be the flow of the reaction-diffusion-stochastic system (2.19), i.e. the set of ((t, φ, τ), η)
such that there exists a solution U of (2.19) whose domain is an interval containing
t and t + τ , U(t) = φ and U(t + τ) = η. It is a consequence of uniqueness that Φ is
a function. By local existence, for any (t, φ) ∈ [0,∞)× BNk (m1,m2,m3), there exists
τ > 0 such that (t, φ, τ) ∈ domainΦ. It also follows from uniqueness that if δ1 and δ2
are positive, then

Φ(t, φ, δ1 + δ2) = Φ
(
t,Φ(t, φ, δ1), δ2

)
. (4.2)

Suppose Ψ(t, φ, δ) = (V (t, φ, δ), Y (t, φ, δ)) is a one step method for solving (2.19) such
that Ψ(t, φ, 0) = φ. Then the local truncation error for the method Ψ is given by

T (t, φ, δ) = Φ(t, φ, δ)−Ψ(t, φ, δ) = (TU (t, φ, δ), TX(t, φ, δ)) (4.3)

where

TU (t, φ, δ) = U(t, φ, δ)− V (t, φ, δ),
TX(t, φ, δ) = X(t, φ, δ)− Y (t, φ, δ).

(4.4)
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Suppose t0, T ∈ [0,∞) such that t0 < T . Let J be a positive integer such that
δ = T

J < 1. Then for each j = 1, . . . , J let

tj = tj−1 + δ;
Φj = Φ(t0,Φ0, tj − t0); Uj = U(t0, U0, tj − t0); Xj = X(t0, X0, tj − t0);
Ψj = Ψ(tj−1,Ψj−1, δ); Vj = V (tj−1, Vj−1, δ); Yj = Y (tj−1, Yj−1, δ);
ej = Φj −Ψj ;
Tj = T (tj−1,Ψj−1, δ).

Finally, define

Φt,φ(x, δ) = Φ(t, φ, δ)(x) and Ψt,ψ(x, δ) = Ψ(t, ψ, δ)(x). (4.5)

The next theorem which gives the error due to the difference in initial conditions is
based on a lemma from [9].

Theorem 4.1. Let Z = (ZU , ZX) be defined by

Φ(t, φ, δ)− Φ(t, ψ, δ) =
(
Kδ(u− v)
ξ − ζ

)
+
(
ZU
ZX

)
(4.6)

where φ = (u, ξ), ψ = (v, ζ). Then for any integer k ≥ 4 there exists a constant
CΦ,k = C(sup |U |, ‖U‖k , ‖X‖ST

) which is independent of δ for δ < 1 such that

|||Φt,φ − Φt,ψ|||2k,δ ≤ |||φ− ψ|||2k (1 + CΦ,kδ), (4.7)

|||Z|||2k,δ ≤ CΦ,k |||φ− ψ|||2k δ. (4.8)

Before we prove this theorem, we must first state several lemmas.
Lemma 4.2. Let B be a Banach space with norm ‖·‖ and C be the space of

functions β : [0, T ) → B which are continuous with respect to the norm ‖·‖. Suppose
α ∈ B and β ∈ C. Then∥∥∥∥α+

∫ t+δ

t

β(τ)dτ
∥∥∥∥2

≤ (1 + δ) ‖α‖2 + (1 + δ)
∫ t+δ

t

‖β(τ)‖2 dτ. (4.9)

Proof. By the triangle inequality and Cauchy-Schwarz inequality,∥∥∥∥α+
∫ t+δ

t

β(τ)dτ
∥∥∥∥2

≤

(
‖α‖ +

∥∥∥∥∥
∫ t+δ

t

β(τ)dτ

∥∥∥∥∥
)2

≤ ‖α‖2 + 2 ‖α‖

∥∥∥∥∥
∫ t+δ

t

β(τ)dτ

∥∥∥∥∥ +

∥∥∥∥∥
∫ t+δ

t

β(τ)dτ

∥∥∥∥∥
2

(4.10)

≤ ‖α‖2 + 2δ
1
2 ‖α‖

(∫ t+δ

t

‖β(τ)‖2 dτ

) 1
2

+ δ

∫ t+δ

t

‖β(τ)‖2 dτ

≤ (1 + δ) ‖α‖2 + (1 + δ)
∫ t+δ

t

‖β(τ)‖2 dτ. (4.11)
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Corollary 4.3. For α ∈ B and β, γ ∈ C,∥∥∥∥α+
∫ t+δ

t

(β(τ) + γ(τ))dτ
∥∥∥∥2

≤ (1 + δ) ‖α‖2

+ 2(1 + δ)
∫ t+δ

t

(‖β(τ)‖2 + ‖γ(τ)‖2)dτ.
(4.12)

The next lemma from [9] is easily proved using induction.
Lemma 4.4. Let A,B, δ > 0 and p ≥ 1. If

µj+1 ≤ (1 +Aδ)µj +Bδp, (4.13)

then

µj ≤ eATµ0 +
B

A

(
eAT − 1

)
δp−1 (4.14)

Proof. [Theorem 4.1] We will consider the two components of Φ = (U,X) sepa-
rately. In the context of Corollary 4.3, let α = Kδ(u− v) and∫ t+δ

t

(β(τ) + γ(τ))dτ = ZU .

Then

‖U(t, φ, δ)− U(t, ψ, δ)‖2k

≤ (1 + δ) ‖Kδ(u− v)‖2k + 2(1 + δ)
∫ t+δ

t

‖Kt−τ [f(U(t, φ, τ))− f(U(t, ψ, τ))]‖2k dτ

+ 2(1 + δ)
∫ t+δ

t

‖Kt−τ [g(X(t, φ, τ))− g(X(t, ψ, τ))]‖2k dτ

≤ (1 + δ) ‖u− v‖2k + 2(1 + δ)Lf,k(sup |U |, ‖U‖k)
2

∫ t+δ

t

‖U(t, φ, τ)− U(t, ψ, τ)‖2k dτ

+ 2(1 + δ)L2
g,k

∫ t+δ

t

|X(t, φ, τ)−X(t, ψ, τ)|2 dτ.

Define

ã(τ) = a(U(t, φ, τ), Xτ (t, φ, τ))− a(U(t, ψ, τ), X(t, ψ, τ)),

b̃(τ) = b(Xτ (t, φ, τ))− b(X(t, ψ, τ)).

Since the expected value of the Itô integral is zero,

E
[

sup
0≤s≤δ

|X(t, φ, s)−X(t, ψ, s)|2
]

= E

[
sup

0≤s≤δ

∣∣∣∣ξ − ζ +
∫ t+s

t

ã(τ)dτ
∣∣∣∣2
]

+ E

[
sup

0≤s≤δ

∣∣∣∣∫ t+s

t

b̃(τ)dWτ

∣∣∣∣2
]
.
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In the context of Lemma 4.2, let α = ξ − ζ and β = ã. Then

E
[

sup
0≤s≤δ

|X(t, φ, s)−X(t, ψ, s)|2
]

≤ (1 + δ)E
[
|ξ − ζ|2

]
+ (1 + δ)E

[∫ t+δ

t

|ã(τ)|2 dτ

]
+ 4E

[∫ t+δ

t

∣∣∣b̃(τ)∣∣∣2 dτ]
≤ (1 + δ)E

[
|ξ − ζ|2

]
+ (1 + δ)La,1(‖U‖k)

2

∫ t+δ

t

E
[

sup
0≤σ≤τ

‖U(t, φ, σ)− U(t, ψ, σ)‖2k

]
dτ

+ (1 + δ)La,2(‖U‖k , ‖X‖ST
)2
∫ t+δ

t

E
[

sup
0≤σ≤τ

|X(t, φ, σ)−X(t, ψ, σ)|2
]
dτ

+ L2
b

∫ t+δ

t

E
[

sup
0≤σ≤τ

|X(t, φ, σ)−X(t, ψ, σ)|2
]
dτ. (4.15)

by the Doob martingale inequality and the Itô Isometry. Therefore,

|||Φ(t, φ, s)− Φ(t, ψ, s)|||2k,δ ≤ (1 + δ) |||φ− ψ|||2k

+ CΦ,k(sup |U |, ‖U‖k , ‖X‖ST
)
∫ t+δ

t

|||Φ(t, φ, τ)− Φ(t, ψ, τ)|||2k,δ dτ
(4.16)

where

CΦ,k( sup |U |, ‖U‖k , ‖X‖ST
) = max{(1 + δ)δ(2Lf,k(sup |U |, ‖U‖k)

2 + La,1(‖U‖k)
2),

(1 + δ)(2L2
g,k + La,2(‖U‖k , ‖X‖ST

)2) + L2
b

Then by the Gronwall inequality,

|||Φt,φ − Φt,ψ|||2k,δ ≤ |||φ− ψ|||2k (1 + δ)eCΦ,kδ, (4.17)

Equation (4.7) immediately follows and (4.8) is the result of subtracting E
[
|ξ − ζ|2

]
from (4.15) and (4.17).

Remark 4.5. The proof of this lemma can be modified to yield the same estimate
with the |||·|||k norm instead of the |||·|||k,δ norm.

4.2. Positivity. It is well known that if the initial condition is nonnegative, i.e.
ui ≥ 0 for i = 1, 2, . . . , N , the solution to the diffusion (3.3) is positive, i.e for t > 0,
Ui(t) > 0 for all i. The following lemma shows that if the initial condition is positive,
the solution to the reaction (3.4) is also positive.

Lemma 4.6. Let I be an open interval. Suppose U : I → Rn satisfies (3.4) and
for some t0 ∈ I, Ui(t0) > 0 for i = 1, 2, . . . , N . Then for all t ∈ I, Ui(t) > 0 for all
i.

Proof. We first note that if ui = 0 for some i, then there exists a solution of (3.4)
such that Ui(t) = 0 for all t > 0. Let t0 ∈ I and U : I → Rn be a trajectory for (3.4)
such that Ui(t0) = 0 for some i. Then f(U(t0)) = 0 and it follows by uniqueness that
Ui(t) = 0 for all t ∈ I. Therefore if Ui(t0) > 0 for all i, for all t ∈ I, Ui(t) > 0 for all
i.

Since the split-step method for the reaction-diffusion equation converges to the
true solution, the solution to the reaction diffusion equation is positive if the initial
condition is nonnegative.
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4.3. Error Estimates for Numerical Methods. In this section we will show
that the splitting outlined in chapter 3 is a first order method. These ideas can be
extended to show the convergence rates of other numerical methods as well.

Throughout this section we assume that the solution of (2.19) exists on the in-
terval [0, T ). We begin by showing that the splitting

Ψt(u, ξ) = (Rt(Lt(u, ξ)), Yt(Rt(Lt(u, ξ)), ξ)))

is bounded in the appropriate norms. Let Lt be given by (3.6) and Rt be the flow of
the reaction (3.4),

dU

dt
= f(U), U(0) = u,

where the reaction terms f = (f1, f2, . . . fN ) are given by

fi(U) = −λUi − q(U) (4.18)

where λ = diag(λ1, λ2, . . . , λN ) and q = (q1, q2, . . . , qN ) is given by

qi =

∑
j 6=i

rijUj

Ui. (4.19)

Recall that the constants λi ≥ 0 and rij ≥ 0 for all i, j = 1, . . . , N . Define λmin =
min{λi : i = 1, 2, . . . , N}.

Lemma 4.7. Suppose k is a nonnegative integer, t ∈ [0, T ) and u ∈ HN
k such that

ui ≥ 0 for i = 1, 2, . . . N . Then

|Rt(Lt(u, ξ))| ≤ (sup |u|+ Cgt)e−λmint, (4.20)

‖Rt(Lt(u, ξ))‖2k ≤ (‖u‖2k + Cg,kt)eCf,k(sup |u|)t. (4.21)

Proof. By Lemma 2.15,

|Lt(u, ξ)| ≤ |Kt(u)|+
∫ t

0

|Kt−τ (g ◦ Tξ)| dτ ≤ sup |u|+
∫ t

0

|g ◦ Tξ| dτ

≤ sup |u|+ CgT (4.22)

and

‖Lt(u, ξ)‖k ≤ ‖Kt(u)‖k +
∫ t

0

‖Kt−τ (g ◦ Tξ)‖k dτ ≤ ‖u‖k +
∫ t

0

‖g ◦ Tξ‖k dτ

≤ ‖u‖k + Cg,kT. (4.23)

Recall that the flow of (3.4) is defined by d
dtRt(u) = f(Rt(u)). Assume ui > 0

for i = 1, 2, . . . , N . It follows from Lemma 4.6 that for t > 0, Rt(ui) > 0 and
qi(Rt(u)) > 0 for all i. Thus,

d

dt
Rt(u) ≤ −λRt(u) and Rt(u) ≤ ue−tλ.
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Recall that if ui ≥ 0 for all i, Lt(ui) > 0 for all t > 0. Then by (4.22),

|Rt(Lt(u))| ≤ |Lt(u)|e−λmint ≤ (sup |u|+ Cgt)e−λmint.

From Theorem 2.13 we have

1
2
d

dt
‖∂αRt(u)‖20 =

(
∂α
(
d

dt
Rt(u)(t)

)
, ∂αRt(u)

)
= (∂αf(Rt(u)), ∂αRt(u))

≤ ‖∂αf(Rt(u))‖0 ‖∂
αRt(u)‖0 .

Summing over |α| ≤ k,

1
2
d

dt
‖Rt(u)‖2k ≤ Cf,k(sup |u|) ‖Rt(u)‖2k .

The solution of the ordinary differential equation above is

‖Rt(u)‖2k ≤ ‖u‖2k e
Cf,k(sup |u|)t. (4.24)

Equation (4.21) follows from substituting Lt(u) for u and applying (4.23).
Corollary 4.8. Let j = 1, 2, . . . , J and C1 and C2 be constants that are inde-

pendent of δ for δ < 1. Under the assumptions of Lemma 4.7,

|Vj | ≤ sup |u|e−λminT + C1, (4.25)

‖Vj‖2k ≤ (‖u‖k + C2)eCf,k(sup |u|)T . (4.26)

Proof. Equations (4.25) and (4.26) follow from repeatedly applying (4.20) and
(4.21), respectively.

Lemma 4.9. If Yt(u, ξ) is a solution to (3.5), then

E
[

sup
0≤t≤T

|Yt(u, ξ)|2
]
≤ CX(ξ, T ). (4.27)

Proof. Recall the stochastic differential equation for the velocity is

dvt = [h(U(xt))− γvt]dt+ σ
√
γdWt.

Using an integrating factor, eγt, the solution is

vt = e−γtν +
∫ t

0

e−γ(t−τ)h(U(xt))dτ + σ
√
γ

∫ t

0

eγ(t−τ)dWτ .

Therefore, by the Cauchy-Schwarz inequality, Doob martingale inequality and Itô
Isometry,

E
[

sup
0≤t≤T

|vt|2
]
≤ 3e−2γT ν + 3E

[
sup

0≤t≤T

∣∣∣∣∫ t

0

e−γ(t−τ)h(U(xt))dτ
∣∣∣∣2
]

+ 3σ2γE

[
sup

0≤t≤T

∣∣∣∣∫ t

0

e−γ(t−τ)dWτ

∣∣∣∣2
]
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≤ 3e−2γT ν + 3TE
[

sup
0≤t≤T

∫ t

0

e−2γ(t−τ)|h(U(xt))|2dτ
]

+ 12σ2γE

[
sup

0≤t≤T

∣∣∣∣∫ t

0

e−γ(t−τ)dτ

∣∣∣∣2
]

≤ 3e−2γT ν +
3T
2γ
(
1− e−2γT

)
+ 6σ

(
1− e−2γT

)
.

The bound on Yt (4.27) immediately follows.
The following theorem gives the convergence rate of a general numerical scheme

to approximate (2.19). The proof builds on an argument by Milstein in [9].
Theorem 4.10. Let p2 ≥ 1

2 and p1 ≥ p2 + 1
2 and k ≥ 3 be an integer. Assume

that there exist constants C1, C2 > 0 such that

|Φ(t, ξ, δ)−Ψ(t, ξ, δ)|k ≤ C1δ
p1 , (4.28)

|||Φ(t, ξ, δ)−Ψ(t, ξ, δ)|||k ≤ C2δ
p2 . (4.29)

Then for j = 0,1. . . ,J, there exists a constant C such that

|||Φ(t0,Φ0, tj)−Ψ(t0,Φ0, tj)|||k ≤ Cδp2−
1
2 . (4.30)

Proof. In order to make use of Theorem 4.1 and conditions (4.28) and (4.29), we
write

Φj+1 −Ψj+1 = Φ(tj ,Φj , δ)−Ψ(tj ,Ψj , δ)
= Φ(tj ,Φj , δ)− Φ(tj ,Ψj , δ) + T (tj ,Ψj , δ).

Then

|||Φj+1 −Ψj+1|||2k = A1 + 2A2 +A3

where

A1 = |||Φ(tj ,Φj , δ)− Φ(tj ,Ψj , δ)|||2k ,
A2 = E[‖U(tj ,Φj , δ)− U(tj ,Ψj , δ)‖k ‖TU (tj ,Ψj , δ)‖k

+ (X(tj ,Φj , δ)−X(tj ,Ψj , δ))TX(tj ,Ψj , δ)],

A3 = |||T (tj ,Ψj , δ)|||2k .

By Theorem 4.1 and (4.29), we have

A1 ≤ |||Φj −Ψj |||2k (1 + CΦ,kδ) = |||ej |||2k (1 + CΦ,kδ) (4.31)

and

A3 ≤ C2δ
2p2 , (4.32)

respectively. Using Lemma 4.1, we write A2 ≤ B1 +B2 where

B1 = E
[
‖Kδ(Uj − Vj)‖k ‖TU (tj ,Ψj , δ)‖k + (Xj − Yj)TX(tj ,Ψj , δ)

]
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and

B2 = E
[
‖ZU‖k ‖TU (tj ,Ψj , δ)‖k + ZXTX(tj ,Ψj , δ)

]
.

Then by the Cauchy-Schwarz inequality and condition (4.28)

B1 ≤ E
[
E
[
‖Uj − Vj‖k ‖TU (tj ,Ψj , δ)‖k |Fj

]]
+ E [E [(Xj − Yj) · TX(tj ,Ψj , δ)|Fj ]]

≤ E
[
‖Uj − Vj‖k E

[
‖TU (tj ,Ψj , δ)‖k |Fj

]]
+ E [(Xj − Yj) · E [TX(tj ,Ψj , δ)|Fj ]]

= E
[(
‖Uj − Vj‖k
Xj − Yj

)
· E
[(
‖TU (tj ,Ψj , δ)‖k
TX(tj ,Ψj , δ)

)∣∣∣Fj]]

≤ E

[∣∣∣∣(‖Uj − Vj‖k
Xj − Yj

)∣∣∣∣2
] 1

2

E

[∣∣∣∣E [(‖TU (tj ,Ψj , δ)‖k
TX(tj ,Ψj , δ)

)∣∣∣Fj]∣∣∣∣2
] 1

2

≤ |||ej |||k
(√

2C1δ
p1
)
.

Using the Cauchy-Schwarz inequality, (4.8) and (4.29) we estimate the second term,

B2 = E
[(
‖ZU‖k
ZX

)
·
(
‖TU (tj ,Ψj , δ)‖k
TX(tj ,Ψj , δ)

)]

≤ E

[∣∣∣∣(‖ZU‖kZX

)∣∣∣∣2
] 1

2

E

[∣∣∣∣(‖TU (tj ,Ψj , δ)‖k
TX(tj ,Ψj , δ)

)∣∣∣∣2
] 1

2

= |||Z|||k |||T (tj ,Ψj , δ)|||k
≤ CΦ,k |||ej |||k δ

1
2 (C2δ

p2).

Since p1 ≥ p2 + 1, δp1 ≤ δp2+
1
2 for δ < 1. Thus,

A2 ≤ C |||ej |||k δ
p2+

1
2 ≤

δ |||ej |||2k
2

+
C2δ2p2

2
. (4.33)

Putting the estimates for (4.31), (4.33) and (4.32) together,

|||ej+1|||2k ≤ |||ej |||2k (1 + CΦ,kδ) + Cδ2p2 . (4.34)

The main result, (4.30), follows from Lemma 4.4 with e0 = 0.
Remark 4.11. The split scheme Ψ from Chapter 3 satisfies Theorem (4.10) with

p1 = 2 and p2 = 3
2 and is therefore a first order method.

4.4. Global Bounds. We now show that the solution to (2.19) is bounded in
the appropriate norms for t ∈ [0, T ).

Theorem 4.12. Let Φ(t) = (U(t), Xt) be a solution of the reaction-diffusion-
stochastic system (2.19) on [0, T ). Then for any nonnegative integer k there exist
constants CU and CU,k such that

sup |U(t)| ≤ CU (sup |u|), (4.35)
‖U(t)‖k ≤ CU,k(sup |u|, ‖u‖k , T ). (4.36)

Proof. Using (4.18) and (4.19) we can rewrite the first equation in (2.19) as

dU

dt
= (D − λ)U(t) + q(U(t)) + g ◦ TXt

, U(0) = u (4.37)
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where we assume that u ≥ 0. Define Kt = e−tλKt. Then

d

dt
Kt(u) = e−tλ(

d

dt
Kt(u)− λKt(u))

= e−tλ(DKt(u)− λKt(u))
= Kt[(D − λ)u].

Therefore,

U(t) = Kt(u) +
∫ t

0

Kt−τ (q(U) + g ◦ TXτ
)dτ. (4.38)

Clearly qi(U) < 0 for all i and thus

U(t) ≤ Kt(u) +
∫ t

0

Kt−τ (g ◦ TXτ
)dτ.

Then (4.35) follows from the fact that

|U(t)| ≤ |Ktu|+
∫ t

0

e−(t−τ)λ|Kt(g ◦ TXτ )|dτ ≤ |u|+ 1
λ
Cg.

Let u, v ∈ HN
k and |α| ≤ k for a nonnegative integer k. Then,

(∂αu, ∂αv) =
N∑
i=1

(∂αui, ∂αvi)

≤ 1
2

N∑
i=1

(
‖∂αui‖2k + ‖∂αvi‖2k

)
=

1
2

(
‖∂αu‖2k + ‖∂αv‖2k

)
.

Thus, using Theorem 2.13 and Lemma 2.15,

1
2
d

dt
‖∂αU(t)‖20 =

(
∂αU̇(t), ∂αU(t)

)
= (D∂αU(t), ∂αU(t)) + (∂αf(U(t)), ∂αU(t)) + (∂αg, ∂αU(t))

≤ ‖∂αf(U(t))‖0 ‖∂
αU(t)‖0 +

1
2

(
‖∂αg‖20 + ‖∂αU(t)‖20

)
.

Summing over |α| ≤ k,

1
2
d

dt
‖U(t)‖2k ≤ Cf,k(CU (sup |u|)) ‖U(t)‖2k +

1
2
C2
g,k.

The estimate (4.36) follows from the fact that the solution of the ordinary differential
equation above is

‖U(t)‖2k ≤

(
‖u‖2k +

C2
g,k

Cf,k(CU (sup |u|))

)
eCf,k(CU (sup |u|))t −

C2
g,k

Cf,k(CU (sup |u|))
.

(4.39)
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4.5. Long Time Existence. We now show that the solution to the reaction-
diffusion-stochastic system exists for all time.

Theorem 4.13. The solution of (2.19) exists for all t ≥ 0.
Proof. Suppose that [0, T ) is the largest interval on which Φ(t) is a solution

of the reaction-diffusion-stochastic system (2.19). If limt↑T Φ(t) exists in CNk , then
there exists a solution on the interval [0, T + δ) for some δ > 0 that depends on the
appropriate bounds on Φ(t). But this contradicts the assumption that [0, T ) is the
largest interval of existence and therefore, the solution of (2.19) exists for all time.

In order to show that limt↑T Φ(t) exists, we obtain the Hölder estimate

|||Φ(t+ δ)− Φ(t)|||k ≤ Cδ
1
2 (4.40)

for some constant C. Suppose U(0) = u. Then by Theorem 2.13, Lemma 2.15 and
(4.35),

‖U(t+ δ)− U(t)‖k ≤ ‖(Kδ − 1)Kt(u)‖k +
∫ t+δ

t

‖f(U(τ))‖k + ‖g ◦ TXτ ‖k dτ

≤ δ
1
2 ‖u‖k+1 + [Cf,k(CU (sup |u|), CU,k(sup |u|, ‖u‖k , T ) + Cg,k] δ.

By (2.33), (4.36) and (4.27), we have

E
[
|Xt+δ −Xt|2

]
≤ E

2

∣∣∣∣∣
∫ t+δ

t

a(U(Xτ ), Xτ )dτ

∣∣∣∣∣
2

+ 2

∣∣∣∣∣
∫ t+δ

t

b(Xτ )dWτ

∣∣∣∣∣
2


≤ E

2δ

∣∣∣∣∣
∫ t+δ

t

a(U(Xτ ), Xτ )dτ

∣∣∣∣∣
2

+ 2
∫ t+δ

t

|b(Xτ )| dτ

2

≤ 2δ2Ca(ξ, T ) + 2σ2γδ.

Therefore, (4.40) holds with C = C(sup |u|, ‖u‖k , ξ, T ).

5. Conclusions. The use of a first order splitting for the reaction-diffusion-
stochastic system allows us to make use of known first order numerical methods for
the diffusion, reaction and stochastic differential equations. In particular, the diffusion
can be discretized spatially using finite elements. From [1], we know that the resulting
error is O(h2) where h is the grid spacing. The resulting problem can be discretized
in time using a first order backward Euler scheme as described in [12]. From [3]
we know that the backward Euler scheme preserves positivity. The reaction can be
approximated by a semi-implicit scheme that preserves positivity. General numerical
methods for stochastic differential equations are outlined in [6]. In our case the cell
motion (1.2), is a Langevin process that can be simulated exactly using ideas from [7].
By combining the numerical methods outlined above we obtain a numerical simulation
that is first order in time and preserves the positivity of the soluble factors.

Figure 5 shows a simulation of the immune response to three sources of MCP1
which is known to attract immune cells called macrophages. A comparison of 1(a)
and 1(b) shows that the macrophages are attracted to the three sources of MCP1 in
the simulation. The macrophages also secrete the chemokines TNF and sTNFr which
is shown in 1(c) and 1(d). The diffusion of all three soluble factors is also apparent
in Figure 5.
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(a) Macrophages responding to MCP1 (b) Concentration of MCP1

(c) Concentration of TNF (d) Concentration of sTNFr

Fig. 5.1. Simulation of an immune response to three sources of MCP1.
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