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Abstract

This project examines sets of Pythagorean triples with a fixed difference k between one of the legs
and the hypotenuse. A Pythagorean triple is an ordered triple of positive integers (x, y, z) such that
x2 + y2 = z2. This paper proposes and proves a formula that will generate every triple of a difference
k, that is, every triple where either z − x = k or z − y = k. The proof of this result utilizes the general
formula for all primitive Pythagorean triples as well as the prime factorization of the integer k.

1 Introduction

Pythagorean triples are a very ancient area in mathematics and throughout the centuries numerous mathe-
maticians have deepened our understanding of their characteristics. Sierpinski provides an excellent summary
on some of their most well known properties in [6]. By far the most significant discovery in this area was
made by Euclid (c. 350 B.C.), who found a formula that characterized every primitive Pythagorean triple
[2]. One of the first known references to Pythagorean triples of a fixed difference is found in the writings of
Plato. Plato notes that (4n, 4n2 − 1, 4n2 +1) yields an infinite set of Pythagorean triples of difference 2 as n
ranges over the positive integers [1]. Building on these foundations, this project sought to find a formula that
would yield every Pythagorean triple of an arbitrary positive difference k. Numerous formulas for specific
k values were found and analyzed until a correct formula was obtained. As noted, the proof of the formula
utilizes Euclid’s classification of primitive Pythagorean triples and well-known number theoretic properties.
Although similar results have been published [4], the formula and its proof were arrived at independently.

2 Formula for Pythagorean Triples of a Difference k

We have the following theorem as our main result:

Theorem 1. Define
f(k) = 2b

n0
2 cp

bn1
2 c

1 p
bn2

2 c
2 ...p

bnr
2 c

r , (2.1)

where 2n0pn1
1 pn2

2 ...pnr
r is the prime factorization of 2k. Then every triple of difference k is given by:

( k
f(k) (2m + k mod 2), 2k

f(k)2 (m− b f(k)
2 c)(m + d f(k)

2 e), 2k
f(k)2 (m− b f(k)

2 c)(m + d f(k)
2 e) + k )

as m runs through all positive integers greater than b f(k)
2 c.

Now by Euclid’s general formula for all primitive Pythagorean triples [2], any triple can be written as
(l(2mn), l(m2 − n2), l(m2 + n2)), where l is some positive integer and m > n > 0 are two relatively prime
positive integers of opposite parity. Throughout this paper x will be used to designate the leg that is a
multiple of 2mn, y will be used to designate the leg that is a multiple of m2 − n2, and z will designate the
hypotenuse. Thus (x, y, z) and (y, x, z) are simply two different notations for the same triple and will be
used interchangeably.
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We will discuss briefly the outline of the proof of this theorem, and then we will proceed to the actual
proof. Let Sk be the set of all triples of difference k, that is, the set of every triple where the hypotenuse is
separated by k from a leg. Let Gk be the set of all triples generated by the above formula as m runs over
all the positive integers greater than b f(k)

2 c. We will show that these sets are equal, that is, that Sk ⊆ Gk

and that Gk ⊆ Sk. To show that Sk ⊆ Gk, we will choose an arbitrary triple (x, y, z) of difference k and
show that it is infact generated by the formula given in Theorem 1. In doing this we will examine two cases:
k is even and k is odd. When k is even, we will have two subcases: z − x = k and z − y = k. When k is
odd, however, we will have only z − x = k. After showing that in every case the triple (x, y, z) is generated
by the formula given in Theorem 1, we conclude that (x, y, z) ∈ Gk and thus that Sk ⊆ Gk. To show that
Gk ⊆ Sk, we pick an arbitrary element (q, r, s) that is generated by the formula given in Theorem 1, and we
show that it is infact a Pythagorean triple of difference k. To do this, we have to verify that q, r, and s are
all positive integers, that q2 + r2 = s2, and that either s− q = k or s− r = k. After showing that (q, r, s) is
indeed a Pythagorean triple of difference k, we conlcude that (q, r, s) ∈ Sk and therefore that Gk ⊆ Sk. We
will then have shown that the sets are equal and thus that the formula given in Theorem 1 produces every
triple of differnce k and nothing else. We will now begin the actual proof.

First of all, we show that Sk ⊆ Gk. Let k be an arbitrary positive integer and let (x, y, z) ∈ Sk. We will
look at the cases where k is even and where k is odd, and we will show that in both cases (x, y, z) ∈ Gk.

Case 1. Let k be an even integer. By the general formula for primitive Pythagorean triples, (x, y, z) is
of the form:

x = l(2mn)

y = l(m2 − n2)

z = l(m2 + n2),

(2.2)

where l is some positive integer and m > n > 0 are two relatively prime positive integers of opposite parity.
Now since this triple has a difference k, either z − x = k or z − y = k. We will examine both of these two
subcases.

Subcase 1: Suppose that z − y = k. Then l(m2 + n2) − l(m2 − n2) = k, which yields k = 2ln2. Thus

n =
√

k
2l , and substituting this expression for n into equation 2.2, we get:

x = m
√

2lk

y = lm2 − k
2

z = lm2 + k
2 .

(2.3)

We will use the following lemma to show (x, y, z) ∈ Gk:

Lemma 1. If (x, y, z) is a triple where z − y = k, and thus has the form given above, it can be written in
the form

x = m1

√
2l1k

y = l1m
2
1 − k

2

z = l1m
2
1 + k

2 ,

(2.4)

for some integers l1 and m1, where l1 is the smallest positive integer such that 2l1k is a perfect square and
m1 = md, where d =

√
2lk√
2l1k

.

Proof. Let q =
√

2l1k, where l1 is the smallest positive integer such that 2l1k is a perfect square. Let
p =

√
2lk, which must be an integer since x is an integer. We will show that q divides p. Now q =

√
2l1k =√

2n0pn1
1 ...pnr

r l1, where 2n0pn1
1 ...pnr

r is the prime factorization of 2k. Now let po1, po2, ..., poj be the primes
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with odd exponents and let pe1, pe2, ..., pes be the primes with even exponents. Since l1 is the smallest integer
such that q ∈ Z, l1 = po1po2...poj . Now let no1, no2, ..., noj be the odd exponents and let ne1, ne2, ..., nes be
the even exponents. Then

q =
√

pe1
ne1pe2

ne2 ...pes
nespo1

no1+1po2
no2+1...poj

noj+1. (2.5)

Now consider p =
√

2lk. We have:

p =
√

pe1
ne1pe2

ne2 ...pes
nespo1

no1po2
no2 ...poj

noj l. (2.6)

Thus in order for p to be an integer, l must contain at least one copy of each of the primes with odd
exponents. Thus po1po2...poj |l. Let r = l

po1po2...poj
. Thus:

p =
√

pe1
ne1pe2

ne2 ...pes
nespo1

no1+1po2
no2+1...poj

noj+1r. (2.7)

Now since every prime exponent is even, every exponent in the prime factorization of r must also be even,

or p won’t be an integer. Thus r must be a perfect square, and
√

r = d, for some positive integer d. Thus:

p
q =

√
pe1

ne1pe2
ne2 ...pes

nespo1
no1+1po2

no2+1...poj
noj+1r√

pe1
ne1pe2

ne2 ...pes
nespo1

no1+1po2
no2+1...poj

noj+1

=
√

r = d.

Thus p = qd, and q|p. Now let m1 = md. Then:

m1

√
2l1k = md

√
2l1k = m

√
2l1kr = m

√
2lk = x

(since l = po1po2...pojr = l1r)

l1m
2
1 − k

2 = l1(md)2 − k
2 = l1m

2r − k
2 = lm2 − k

2 = y

l1m
2
1 + k

2 = l1(md)2 + k
2 = l1m

2r + k
2 = lm2 + k

2 = z.

(2.8)

Thus we have shown that the triple (x, y, z) we selected, where z − y = k, can be written in the form:

x = m1

√
2l1k

y = l1m
2
1 − k

2

z = l1m
2
1 + k

2 ,

(2.9)

for some integers l1 and m1, where l1 is the smallest positive integer such that 2l1k is a perfect square. Now
we need to show that this triple is in the set Gk. We will do this by showing that there exists some integer
m2 > b f(k)

2 c such that:
x = k

f(k) (2m2 + k mod2)

y = 2k
f(k)2 (m2 − b f(k)

2 c)(m2 + d f(k)
2 e)

z = 2k
f(k)2 (m2 − b f(k)

2 c)(m2 + d f(k)
2 e) + k.

(2.10)

Before we can show this, however, we must prove an additional lemma, which holds regardless of the parity
of k.
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Lemma 2. If l1 is the smallest positive integer such that 2l1k is a perfect square and f(k) is as defined in
Theorem 1, then l1 = 2k

f(k)2 .

Proof. Let 2n0pn1
1 pn2

2 ...pnr
r be the prime factorization of 2k. Now let po1, po2, ..., poj be the primes with odd

exponents and let pe1, pe2, ..., pes be the primes with even exponents; also, let ne1, ne2, ..., nes be the even

exponents and let no1, no2, ..., noj be the odd exponents. Then:

2k
f(k)2 = 2n0p

n1
1 p

n2
2 ...pnr

r

(2b
n0
2 cp

bn1
2 c

1 p
bn2

2 c
2 ...p

bnr
2 c

r )2

=
pe1

ne1pe2
ne2 ...pes

nespo1
no1po2

no2 ...poj
noj

(pe
bne1

2 c
1 pe

bne2
2 c

2 ...pe
bnes

2 c
s )2(po

bno1
2 c

1 po
bno2

2 c
2 ...po

b
noj
2 c

j )2

=
pe1

ne1pe2
ne2 ...pes

nespo1
no1po2

no2 ...poj
noj

pe
ne1
1 pe

ne2
2 ...pe

nes
s po

no1−1
1 po

no2−1
2 ...po

noj−1

j

= po1po2...poj = l1.

(Since l1 is the smallest integer such that 2l1k is a perfect square, it contains exactly one copy of each
prime that has an odd exponent in the prime factorization of 2k.)

Now we will proceed to show that the integer m1, as described in Lemma 1, is the integer that will
generate the triple (x, y, z) when inserted into our formula for Gk, as given in Theorem 1. Since y > 0 and
y = l1m

2
1 − k

2 , we have:

l1m
2
1 − k

2 > 0

l1m
2
1 > k

2

2k
f(k)2 m2

1 > k
2 (using the substitution from Lemma 2)

4m2
1 > f(k)2

2m1 > f(k)

m1 > f(k)
2

m1 > b f(k)
2 c.

(2.11)

Thus since m1 is an integer and m1 > b f(k)
2 c, m1 is in the domain of the formula given in Theorem 1. Now
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since k is even, we have:
x = m1

√
2l1k

= m1

√
2k2k
f(k)2

= 2m1
k

f(k)

= k
f(k) (2m1 + k mod2)

y = l1m
2
1 − k

2

= 2k
f(k)2 m2

1 − 2k
4

= 2k
f(k)2 (m2

1 −
f(k)2

4 )

= 2k
f(k)2 (m1 − f(k)

2 )(m1 + f(k)
2 )

= 2k
f(k)2 (m1 − b f(k)

2 c)(m1 + d f(k)
2 e)

z = l1m
2
1 + k

2

= l1m
2
1 − k

2 + k

= 2k
f(k)2 (m1 − b f(k)

2 c)(m1 + d f(k)
2 e) + k.

(2.12)

Note that since k is even, f(k) is also clearly even, since 2k has at least two factors of 2 in it. Thus
f(k)

2 = b f(k)
2 c = d f(k)

2 e, which was used in the above derivation. Thus we have shown that when k is even
and when z − y = k, (x, y, z) ∈ Gk because the integer m1 produces it.

Subcase 2: Now suppose that z − x = k (k still even). We will make use of the following lemma to show
that (x, y, z) ∈ Gk. Note, however, that this lemma does not require k to be even.

Lemma 3. If (x, y, z) is a triple such that z − x = k, then there exist integers m2 and l2 such that

x = 2m2(m2l2 −
√

kl2)

y = 2m2

√
kl2 − k

z = 2m2(m2l2 −
√

kl2) + k,

(2.13)

where l2 is the smallest positive integer such that kl2 is a perfect square.

Proof. Let (x, y, z) be a triple where z − x = k. By the general formula for primitive Pythagorean triples,

x = l(2mn)

y = l(m2 − n2)

z = l(m2 + n2),

(2.14)

where l is some positive integer and m > n > 0 are two relatively prime positive integers of opposite parity.

Since z − x = k, we have l(m2 + n2)− l(2mn) = k, which yields n = m−
√

k
l . Substituting this expression
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for n into equation 2.14, we get:
x = 2m(ml −

√
kl)

y = 2m
√

kl − k

z = 2m(ml −
√

kl) + k.

(2.15)

Now we need to show that there exists some integer m2 such that:

x = 2m2(m2l2 −
√

kl2)

y = 2m2

√
kl2 − k

z = 2m2(m2l2 −
√

kl2) + k,

(2.16)

where l2 is the smallest positive integer such that kl2 is a perfect square. Let q =
√

kl2 and let p =
√

kl (note
that p must be an integer for x, y, and z to be integers). Let 2a0pa1

1 pa2
2 ...par

r be the prime factorization of k.
Also, let po1, po2, ..., poj be the primes with odd exponents and let pe1, pe2, ..., pes be the primes with even
exponents. Now let ao1, ao2, ..., aoj be the odd exponents and let ae1, ae2, ..., aes be the even exponents. We
will show that q divides p. Now,

q =
√

kl2 =
√

pa0
0 pa1

1 pa2
2 ...par

r l2 =
√

pe1
ae1pe2

ae2 ...pes
aespo1

ao1po2
ao2 ...poj

aoj l2. (2.17)

Since l2 is the smallest integer that will make every exponent under the radical even, l2 = po1po2...poj , and√
kl2 =

√
pe1

ae1pe2
ae2 ...pes

aespo1
ao1+1po2

ao2+1...poj
aoj+1. (2.18)

Now,

p =
√

kl =
√

pa0
0 pa1

1 pa2
2 ...par

r l =
√

pe1
ae1pe2

ae2 ...pes
aespo1

ao1po2
ao2 ...poj

aoj l. (2.19)

Now in order for p to be an integer, l must contain as factors at least one copy of every prime with an odd
exponent in the prime factorization of k; thus l2|l, so l = l2r, for some integer r. The integer r must also
contain only even exponents in its prime factorization, or p will again not be an integer. Thus

√
r = d, for

some integer d. So we have:

√
kl =

√
pe1

ae1pe2
ae2 ...pes

aespo1
ao1+1po2

ao2+1...poj
aoj+1r, (2.20)

and therefore

p

q
=

√
kl√
kl2

=

√
pe1

ae1pe2
ae2 ...pes

aespo1
ao1+1po2

ao2+1...poj
aoj+1r√

pe1
ae1pe2

ae2 ...pes
aespo1

ao1+1po2
ao2+1...poj

aoj+1
=
√

r = d. (2.21)

Thus q|p. Now let m2 = md. Then:

2m2(m2l2 −
√

kl2) = 2md(mdl2 −
√

kl2)
= 2m2rl2 − 2md

√
kl2

= 2m2l − 2m
√

kl2r

= 2m2l − 2m
√

kl

= 2m(ml −
√

kl)
= x

(2.22)
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2m2

√
kl2 − k = 2md

√
kl2 − k

= 2m
√

kl2r − k

= 2m
√

kl − k
= y

2m2(m2l2 −
√

kl2) + k = 2md(mdl2 −
√

kl2) + k

= 2m(ml −
√

kl) + k
= z.

(2.23)

Thus we have shown that for any triple (x, y, z) where z−x = k, there exist integers m2 and l2 such that

x = 2m2(m2l2 −
√

kl2)

y = 2m2

√
kl2 − k

z = 2m2(m2l2 −
√

kl2) + k,

(2.24)

where l2 is the smallest positive integer such that kl2 is a perfect square.
Now we are trying to show that when k is even and z − x = k, our triple (x, y, z) ∈ Gk. In Lemma 3, we

established the general form that any triple (x, y, z) where z−x = k must have. We now state an additional
lemma that provides a simplification of this form when k is required to be even.

Lemma 4. Suppose (x, y, z) is a triple such that z− x = k for some even k. Then there exists some integer
m1 such that

x = l1m
2
1 − k

2

y = m1

√
2l1k

z = l1m
2
1 + k

2 ,

(2.25)

where l1 is the smallest integer such that
√

2kl1 is a perfect square.

Proof. Let (x, y, z) be a triple such that z − x = k for some even k. Now by Lemma 3, (x, y, z) has the
following form:

x = 2m2(m2l2 −
√

kl2)

y = 2m2

√
kl2 − k

z = 2m2(m2l2 −
√

kl2) + k,

(2.26)

for some integers m2 and l2, where l2 is the smallest positive integer such that kl2 is a perfect square. Now
k is even, and it has either an even or an odd number of 2’s in its prime factorization. We will show that in
either case, an integer m1 can be found that will allow us to write the triple in the form given in Lemma 4.

Case 1: Suppose k has an odd number of 2’s in its prime factorization. Then k = pe1
ne1pe2

ne2 ...pes
nes

2no1po2
no2 ...poj

noj , where 2, po2, ..., poj are the prime factors with odd exponents and pe1, pe2, ..., pes are the
prime factors with even exponents. Recall that since l1 is the smallest integer such that 2kl1 is a perfect
square, l1 = po2...poj (since k contains an odd number of 2’s, there is no need for an additional factor of 2
to make 2kl1 a perfect square; thus 2 is not a factor of l1). However, l2 must have a factor of 2 in order for
kl2 to be a perfect square; namely, l2 = 2po2...poj . Therefore, l1 = l2

2 , that is l2 = 2l1. Thus:

2kl1 = pe1
ne1pe2

ne2 ...pes
nes2no1+1po2

no2+1...poj
noj+1, (2.27)
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which implies that
k√
2kl1

= pe1
ne1pe2

ne2 ...pes
nes2no1po2

no2 ...poj
noj

pe1

ne1
2 pe2

ne2
2 ...pes

nes
2 2

no1+1
2 po2

no2+1
2 ...poj

noj+1
2

= pe1

ne1
2 pe2

ne2
2 ...pes

nes
2 2

no1−1
2 po2

no2−1
2 ...poj

noj−1
2 .

(2.28)

Now since ne1, ne2, ..., nes and no1 − 1, no2 − 1, ..., noj − 1 are all even, nonnegative integers, ne1
2 , ne2

2 ..., nes

2

and no1−1
2 , no2−1

2 , ...,
noj−1

2 are all nonnegative integers, and thus the above product is an integer. Namely,
k√
2kl1

is an integer.

Now let m1 = 2m2 − k√
2kl1

. We will show that this is the integer we need to write the triple (x, y, z) in the
form given in Lemma 4. We have:

x = 2m2(m2l2 −
√

kl2)

= 2(m1
2 + k

2
√

2kl1
)( 2l1m1

2 + 2l1k
2
√

2kl1
−
√

2kl1)

= (m1 + k√
2kl1

)(l1m1 + l1k√
2kl1

−
√

2kl1)

= (m1 +
√

k√
2l1

)(l1m1 +
√

l1k√
2
−
√

2kl1)

= l1m1
2 + m1

√
l1k√
2
−m1

√
2kl1 + m1

√
l1k√
2

+ k
√

l1
2
√

l1
− k

= l1m1
2 + m1(

√
l1k√
2
−

√
2
√

2kl1√
2

+
√

l1k√
2

)− k
2

= l1m1
2 + m1( 2

√
l1k−2

√
l1k√

2
)− k

2

= l1m1
2 − k

2

y = 2m2

√
kl2 − k

= 2(m1
2 + k

2
√

2kl1
)(
√

2kl1)− k

= m1

√
2kl1

z = 2m2(m2l2 −
√

kl2) + k

= l1m1
2 − k

2 + k

= l1m1
2 + k

2 ,

(2.29)

since we just showed that x = 2m2(m2l2 −
√

kl2) = l1m1
2 − k

2 . Thus when there are an odd number of 2’s
in the prime factorization of k, a triple (x, y, z) where z − x = k can be written in the form given in Lemma
4. Now we proceed to the second case in the proof of Lemma 4.

Case 2. Suppose k has an even number of 2’s in its prime factorization. We will show that m1 = m2− k√
2kl1

is the integer that will allow us to write (x, y, z) in the desired form. First of all, however, we must show
that k√

2kl1
is indeed an integer.

Since k has an even number of 2’s in its prime factorization, k = 2ne1pe2
ne2 ...pes

nespo1
no1po2

no2 ...poj
noj ,

where po1, po2, ..., poj are the prime factors with odd exponents and 2, pe2, ..., pes are the prime factors with
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even exponents. Now since k contains an even number of 2’s, l1 must contain a factor of 2 in order for 2kl1 to
be a perfect square. However, l2 does not need a factor of 2 in order for l2k to be a perfect square, and thus
l1 = 2l2. So we get l1 = 2po1po2...poj and 2kl1 = 2ne1+2pe2

ne2 ...pes
nespo1

no1+1po2
no2+1...poj

noj+1. Thus:

k√
2kl1

=
2ne1pe2

ne2 ...pes
nespo1

no1po2
no2 ...poj

noj√
2ne1+2pe2

ne2 ...pes
nespo1

no1+1po2
no2+1...poj

noj+1

=
2ne1pe2

ne2 ...pes
nespo1

no1po2
no2 ...poj

noj

2
ne1+2

2 pe2

ne2
2 ...pes

nes
2 po1

no1+1
2 po2

no2+1
2 ...poj

noj+1

2

= 2
ne1−2

2 pe2

ne2
2 ...pes

nes
2 po1

no1−1
2 po2

no2−1
2 ...poj

noj−1

2 .

Now ne1 − 2, ne2, ..., nes and no1 − 1, no2 − 1, ..., noj − 1 are all even; thus all the exponents are integers.
Note that since k is even, ne1 ≥ 2, and thus ne1 − 2 ≥ 0. Thus we know that all of the exponents are in fact
nonnegative integers, and thus the above product is an integer; namely, k√

2kl1
is an integer.

Now let m1 = m2 − k√
2kl1

. Then

x = 2m2(m2l2 −
√

kl2)

= 2(m1 + k√
2kl1

)( l1m1
2 + l1k

2
√

2kl1
−

√
kl1
2 )

= (2m1 +
√

2k√
l1

)( l1m1
2 +

√
l1k

2
√

2
−

√
l1k√
2

)

= l1m
2
1 + m1

√
l1k√
2
−m1

√
2kl1 + m1

√
2kl1
2 + k

2 − k

= l1m
2
1 + m1(

√
2l1k
2 − 2

√
2kl1
2 +

√
2kl1
2 )− k

2

= l1m
2
1 − k

2

y = 2m2

√
kl2 − k

= 2(m1 + k√
2kl1

)(
√

kl1
2 )− k

= (2m1 + 2k√
2kl1

)(
√

kl1
2 )− k

= m1

√
2kl1 + k − k

= m1

√
2kl1

z = 2m2(m2l2 −
√

kl2) + k

= l1m
2
1 − k

2 + k

= l1m
2
1 + k

2 ,

(2.30)

since we already showed in our analysis of x that 2m2(m2l2 −
√

kl2) = l1m
2
1 − k

2 .

Thus we have shown that when (x, y, z) is a triple where z − x = k for some even k, there exists some
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integer m1 such that the triple can be written as:

x = l1m
2
1 − k

2

y = m1

√
2l1k

z = l1m
2
1 + k

2 ,

(2.31)

where l1 is the smallest integer such that 2kl1 is a perfect square. We are trying to show that when (x, y, z)
is a triple where z − x = k for some even k, (x, y, z) ∈ Gk. Having shown in Lemma 4 that (x, y, z) has
the above form, we can now use a derivation almost identical to the one in 2.12 to show that (x, y, z) ∈ Gk;
namely, we will show that when the integer m1 is inserted into the formula given in Theorem 1, the triple
(x, y, z) is produced. Note that since x > 0 and x = l1m

2
1 − k

2 , we have l1m
2
1 − k

2 > 0, and an identical
argument to the one given in 2.11 shows that m1 > b f(k)

2 c. Thus m1 is in the domain of the formula given
in Theorem 1, and we have:

x = l1m
2
1 − k

2

= 2k
f(k)2 m2

1 − 2k
4

= 2k
f(k)2 (m2

1 −
f(k)2

4 )

= 2k
f(k)2 (m1 − f(k)

2 )(m1 + f(k)
2 )

= 2k
f(k)2 (m1 − b f(k)

2 c)(m1 + d f(k)
2 e)

y = m1

√
2l1k

= m1

√
2k2k
f(k)2

= m1
2k

f(k)

= k
f(k)2m1

= k
f(k) (2m1 + k mod2)

z = l1m
2
1 + k

2

= l1m
2
1 − k

2 + k

= 2k
f(k)2 (m1 − b f(k)

2 c)(m1 + d f(k)
2 e) + k.

(2.32)

Thus we see that when the integer m1 is inserted into the formula given in Theorem 1, the triple (y, x, z) is
produced. Since we are considering the triple (y, x, z) to be the same triple as (x, y, z), (x, y, z) ∈ Gk. In the
above derivation we once again made use of the fact that l1 = 2k

f(k)2 , which we proved in Lemma 2.
Thus we have shown that when k is even, (x, y, z) ∈ Gk for the subcases z − y = k and z − x = k. Since
these are the only possible subcases, we have shown that when k is even, (x, y, z) ∈ Gk. We now proceed to
Case 2, where k is odd.

Case 2: Suppose that k is an odd integer. Now by the general formula for primitive Pythagorean triples,

10



we know that (x, y, z) has the following form:

x = l(2mn)

y = l(m2 − n2)

z = l(m2 + n2),

(2.33)

where l is some positive integer and m > n > 0 are two relatively prime positive integers of opposite parity.
Now since we are supposing this triple has difference k, either z − x = k or z − y = k. Observe that
z − y = l(m2 + n2) − l(m2 − n2) = 2ln2; thus z − y is even. Since k is odd, z − y 6= k, and we must have
z − x = k. Thus for k odd, we do not have two subcases like we did for k even. Now by Lemma 3 (since
Lemma 3 holds for both even and odd k), the triple (x, y, z) can be written in the following form for some
integer m2:

x = 2m2(m2l2 −
√

kl2)

y = 2m2

√
kl2 − k

z = 2m2(m2l2 −
√

kl2) + k,

(2.34)

where l2 is the smallest positive integer such that kl2 is a perfect square. We need to show that this triple
is in the set Gk. We will proceed by showing that the triple (y, x, z) ∈ Gk, which clearly implies that
(x, y, z) ∈ Gk. To show (y, x, z) ∈ Gk, we must show that there exists some integer m1 greater than b f(k)

2 c
such that:

y = k
f(k) (2m1 + k mod2)

x = 2k
f(k)2 (m1 − b f(k)

2 c)(m1 + d f(k)
2 e)

z = 2k
f(k)2 (m1 − b f(k)

2 c)(m1 + d f(k)
2 e) + k.

(2.35)

Recall that l1 is the smallest positive integer such that 2kl1 is a perfect square and that l2 is the smallest
integer such that kl2 is a perfect square. Thus l2 contains one copy of every prime factor of k that has an
odd exponent, while l1 contains one copy of every prime factor of 2k that has an odd exponent. Since 2 is
not a factor of k, l2 does not contain a factor of 2, but since 2 is a factor of 2k and has an odd exponent in
the prime factorization of 2k, l1 does have a factor of 2. However, all the other factors of l1 and l2 are clearly
the same. Thus we have l2 = l1

2 . Recall that l1 = 2k
f(k)2 , as shown in Lemma 2, which holds regardless of the

parity of k. So:

l2 =
l1
2

=
2k

2f(k)2
=

k

f(k)2
. (2.36)

Now let m1 = m2 − f(k)+1
2 . We will show that m1 is the integer that will produce the triple (y, x, z) when

inserted into the formula given in Theorem 1. First of all, however, we must show that m1 is in the domain
of the formula given in Theorem 1; namely, we must verify that m1 is an integer and that m1 > b f(k)

2 c.
Now since k is odd, there is only one 2 in the prime fctorization of 2k, that is 2k = 21pn1

1 pn2
2 ...pnr

r , where

2, p1, p2, ..., pr are the distinct prime factors of 2k. Thus f(k) = 2b
1
2 cp

bn1
2 c

1 p
bn2

2 c
2 ...p

bnr
2 c

r , which shows that
f(k) has no factors of 2. Thus f(k) is odd, making f(k) + 1 even and f(k)+1

2 an integer. Therefore,
m1 = m2 − f(k)+1

2 is also an integer.

11



Note also that since x > 0 and x = 2m2(m2l2 −
√

kl2), we must have m2l2 −
√

kl2 > 0. Thus:

(m1 + f(k)+1
2 )l2 >

√
kl2

(m1 + f(k)+1
2 ) k

f(k)2 >
√

k2

f(k)2

m1 + f(k)+1
2 > f(k)

m1 > 2f(k)
2 − f(k)+1

2

m1 > f(k)−1
2

m1 > b f(k)
2 c (since k is odd, f(k) is odd, and thus f(k)−1

2 = b f(k)
2 c).

(2.37)

Thus m1 is an integer greater than b f(k)
2 c and is thus in the domain of the formula given in Theorem 1.

Since m2 = m1 + f(k)+1
2 , we get:

y = 2m2

√
kl2 − k

= 2m2

√
k2

f(k)2 − k

= 2m2
k

f(k) − k

= 2(m1 + f(k)+1
2 )( k

f(k) )− k

= (2m1 + f(k) + 1)( k
f(k) )− k

= 2k
f(k)m1 + k + k

f(k) − k

= k
f(k) (2m1 + 1)

= k
f(k) (2m1 + k mod2)

x = 2m2(m2l2 −
√

kl2)

= 2(m1 + f(k)+1
2 )[(m1 + f(k)+1

2 ) k
f(k)2 −

√
k2

f(k)2 ]

= (2m1 + f(k) + 1)( m1k
f(k)2 + k

2f(k) + k
2f(k)2 −

k
f(k) )

= (2m1 + f(k) + 1)( m1k
f(k)2 + k

2f(k)2 −
k

2f(k) )

= m2
1

2k
f(k)2 + m1

k
f(k)2 −m1

k
f(k) + m1

k
f(k) + k

2f(k) −
k
2 + m1

k
f(k)2 + k

2f(k)2 −
k

2f(k)

= m2
1

2k
f(k)2 + m1

2k
f(k)2 −

k
2 + k

2f(k)2

= 2k
f(k)2 (m2

1 + m1 − f(k)2

4 + 1
4 )

= 2k
f(k)2 (m2

1 + m1(
f(k)+1

2 − f(k)−1
2 )− ( f(k)2−1

4 ))

= 2k
f(k)2 (m2

1 −m1(
f(k)−1

2 ) + m1(
f(k)+1

2 )− ( f(k)−1
2 )( f(k)+1

2 ))

(2.38)
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Now since k is odd, f(k) is odd, and thus we have that b f(k)
2 c = f(k)−1

2 and d f(k)
2 e = f(k)+1

2 . Substituting
this we get:

x = 2k
f(k)2 (m2

1 −m1b f(k)
2 c+ m1d f(k)

2 e − d f(k)
2 eb f(k)

2 c)

= 2k
f(k)2 (m1 − b f(k)

2 c)(m1 + d f(k)
2 e).

(2.39)

Likewise, we see that:

z = x + k =
2k

f(k)2
(m1 − bf(k)

2
c)(m1 + df(k)

2
e) + k. (2.40)

Thus when (x, y, z) is a triple where z − x = k for some odd integer k, (y, x, z) is clearly an element of Gk

because it is the triple that is generated when the integer m1 is inserted into the formula given in Theorem
1. Since, again, we are considering (y, x, z) to be the same triple as (x, y, z), we have shown that (x, y, z) ∈ Gk.

Thus we have shown that for an arbitrary triple (x, y, z) of difference k, that is for an arbitrary element
of Sk, (x, y, z) ∈ Gk both when k is even and when k is odd. Therefore we have shown that Sk ⊆ Gk. For k
even, we examined two subcases: z − y = k and z − x = k, while for k odd we had only z − x = k.
To conclude the proof of our main theorem, we must now show that Gk ⊆ Sk. Let (q, r, s) be an arbitrary
element of Gk and let m and k be the integers required by Theorem 1 to produce (q, r, s). In order for
(q, r, s) ∈ Sk, we need to verify that (q, r, s) is a Pythagorean triple of difference k. Note that if (q, r, s) is a
Pythagorean triple, then it is clearly a Pythagorean triple with a difference of k. For since (q, r, s) has the
following form:

q = k
f(k) (2m + k mod2)

r = 2k
f(k)2 (m− b f(k)

2 c)(m + d f(k)
2 e)

s = 2k
f(k)2 (m− b f(k)

2 c)(m + d f(k)
2 e) + k,

(2.41)

clearly s− r = k. Therefore, all that needs to be shown is that (q, r, s) is a Pythagorean triple, namely that
q, r, and s are positive integers and that q2 + r2 = s2.
Now since m > b f(k)

2 c, clearly q, r, and s must all be positive. Thus if k
f(k) and 2k

f(k)2 are integers, then
q, r, and s must in fact be positive integers. It is clear from Lemma 2 that 2k

f(k)2 is an integer; thus we will
simply show that k

f(k) is an integer. We will look at the k even and k odd cases.

Case 1: Suppose k is even and let 2n0pn1
1 ...pnr

r be the prime factorization of k. Then:

k
f(k) = 2n0p

n1
1 ...pnr

r

2b
n0+1

2 cp
bn1

2 c
1 p

bn2
2 c

2 ...p
bnr

2 c
r

= 2n0−bn0+1
2 cp

n1−bn1
2 c

1 p
n2−bn2

2 c
2 ...p

nr−bnr
2 c

r .

(2.42)

Now since every exponent in the above expression is clearly nonnegative, k
f(k) is an integer.

Case 2: Suppose k is odd and that k = pn1
1 pn2

2 ...pnr
r is the prime factorization of k. Then:

k
f(k) = p

n1
1 p

n2
2 ...pnr

r

2b
1
2 cp

bn1
2 c

1 p
bn2

2 c
2 ...p

bnr
2 c

r

= p
n1
1 p

n2
2 ...pnr

r

20p
bn1

2 c
1 p

bn2
2 c

2 ...p
bnr

2 c
r

= p
n1−bn1

2 c
1 p

n2−bn2
2 c

2 ...p
nr−bnr

2 c
r

(2.43)

Once again, since every exponent is clearly a nonnegative integer, k
f(k) is also an integer.

Thus we have verified that q, r, and s are indeed positive integers. Now we will show that q2 + r2 = s2.
Once again, we will look at two cases.
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Case 1: Suppose that k is even. Then since k is even, f(k) is also even because it clearly contains a factor
of 2. Thus b f(k)

2 c = d f(k)
2 e = f(k)

2 . Also, k mod2 = 0. Thus our formulas for q, r, and s can be simplified
as follows:

q = k
f(k) (2m)

r = 2k
f(k)2 (m− f(k)

2 )(m + f(k)
2 )

s = 2k
f(k)2 (m− f(k)

2 )(m + f(k)
2 ) + k.

(2.44)

Thus:
q2 + r2 = (2m k

f(k) )
2 + [ 2k

f(k)2 (m− f(k)
2 )(m + f(k)

2 )]2

= (2m k
f(k) )

2 + [ 2k
f(k)2 (m2 − f(k)2

4 )]2

= (2m k
f(k) )

2 + ( 2k
f(k)2 m2 − k

2 )2

= 4m2 k2

f(k)2 + 4k2

f(k)4 m4 − 2k2

f(k)2 m2 + k2

4

= 4k2

f(k)4 m4 + 2k2

f(k)2 m2 + k2

4

= ( 2k
f(k)2 m2 + k

2 )2

= ( 2k
f(k)2 m2 − k

2 + k)2

= [ 2k
f(k)2 (m2 − f(k)2

4 ) + k]2

= [ 2k
f(k)2 (m− f(k)

2 )(m + f(k)
2 ) + k]2

= s2

(2.45)

Case 2: Suppose that k is odd. Then f(k) is also odd since it does not contain a factor of 2. Thus
b f(k)

2 c = f(k)−1
2 and d f(k)

2 e = f(k)+1
2 . Also, k mod2 = 1. Thus our formulas for q, r, and s simplify as

follows:

q = k
f(k) (2m + 1)

r = 2k
f(k)2 (m− f(k)−1

2 )(m + f(k)+1
2 )

s = 2k
f(k)2 (m− f(k)−1

2 )(m + f(k)+1
2 ) + k.

(2.46)

Thus:

q2 + r2 = [ k
f(k) (2m + 1)]2 + [ 2k

f(k)2 (m− f(k)−1
2 )(m + f(k)+1

2 )]2

= k2

f(k)2 (4m2 + 4m + 1) + 4k2

f(k)4 [(m− f(k)−1
2 )(m + f(k)+1

2 )]2

= 4k2

f(k)2 m2 + 4k2

f(k)2 m + k2

f(k)2 + 4k2

f(k)4 [(m− f(k)−1
2 )(m + f(k)+1

2 )]2

= 4k2

f(k)2 m2 + 4k2

f(k)2 m− k2 + k2

f(k)2 + k2 + 4k2

f(k)4 [(m− f(k)−1
2 )(m + f(k)+1

2 )]2

(2.47)
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= 4k2

f(k)2 (m2 + m− f(k)2

4 + 1
4 ) + k2 + 4k2

f(k)4 [(m− f(k)−1
2 )(m + f(k)+1

2 )]2

= 4k2

f(k)2 (m− f(k)−1
2 )(m + f(k)+1

2 ) + k2 + 4k2

f(k)4 [(m− f(k)−1
2 )(m + f(k)+1

2 )]2

= 4k2

f(k)4 [(m− f(k)−1
2 )(m + f(k)+1

2 )]2 + 4k2

f(k)2 (m− f(k)−1
2 )(m + f(k)+1

2 ) + k2

= [ 2k
f(k)2 (m− f(k)−1

2 )(m + f(k)+1
2 ) + k]2

= s2

(2.48)

So we see that (q, r, s), both for k even and k odd, is indeed a Pythagorean triple with a difference of k,
and so (q, r, s) ∈ Sk. Thus we have shown that Gk ⊆ Sk. Finally, since Sk ⊆ Gk and Gk ⊆ Sk, Gk = Sk,
which concludes the proof of our main theorem. Thus the formula given in Theorem 1 produces every triple
of difference k for any positive integer k.

3 Alternate Formula for Pythagorean Triples of Difference k

Having proved that Gk = Sk, we can now prove some additional properties about Sk using this equivalence.
In particular, we have the following result:

Theorem 2. The set of all triples of difference k can be generated by the union of f(k) disjoint, infinite
subsets, where the following property holds for each of these subsets:

d

dn
Leg2(n) = 2(Leg1(n)), (3.1)

where (Leg1(n), Leg2(n), Leg2(n) + k) denote the generating formulas of the subset. In particular, for k
even:

Sk =
⋃f(k)−1

i=0 {(2kn + 2ki
f(k) , 2kn2 + 4ki

f(k)n + 2ki2

f(k)2 −
k
2 ,

2kn2 + 4ki
f(k)n + 2ki2

f(k)2 + k
2 ) : n ∈ Z, n > 1

2 −
i

f(k)}.
(3.2)

Similarly, for k odd:

Sk =
⋃f(k)−1

i=0 {(2kn + 2ik
f(k) + k

f(k) , 2kn2 + 4ki
f(k)n + 2k

f(k)n + 2ki2

f(k)2 + 2ki
f(k)2 −

k
2 + 1

4 ,

2kn2 + 4ki
f(k)n + 2k

f(k)n + 2ki2

f(k)2 + 2ki
f(k)2 + k

2 + 1
4 ) : n ∈ Z, n > 1

2 −
1

2f(k) −
i

f(k)}.
(3.3)

The proof of this theorem is a clear application of Theorem 1. Once again, we will examine both the k
even and k odd cases.

Proof. Let k be some positive integer. Now by Theorem 1, every triple of difference k is generated by the
following formula as m ranges over the positive integers greater than b f(k)

2 c:

(
k

f(k)
(2m + k mod2),

2k

f(k)2
(m− bf(k)

2
c)(m + df(k)

2
e), 2k

f(k)2
(m− bf(k)

2
c)(m + df(k)

2
e) + k). (3.4)

Case 1: Suppose k is even. Then our generating formula simplifies to:

(
k

f(k)
(2m),

2k

f(k)2
(m− f(k)

2
)(m +

f(k)
2

),
2k

f(k)2
(m− f(k)

2
)(m +

f(k)
2

) + k). (3.5)

Thus as m ranges over the positive integers greater than b f(k)
2 c every triple of difference k is produced. It is

easy to see that every distinct positive integer produces a unique triple when inserted into the formula. Now
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by the division algorithm [2], we can partition all the positive integers greater than b f(k)
2 c into their residue

classes mod f(k). If we were partitioning all of the positive integers into their residue classes mod f(k), the
ith residue class would be given by f(k)n + i, where n is any nonnegative integer. However, to eliminate
producing integers in the ith residue class that are smaller than b f(k)

2 c, we must have f(k)n + i > b f(k)
2 c,

which happens exactly when n > 1
2 −

i
f(k) . Thus the set {f(k)n + i : n ∈ Z, n > 1

2 −
i

f(k)} is exactly the ith

residue class mod f(k) of the positive integers greater than b f(k)
2 c. The restriction on n causes n to start

at 0 or 1 as necessary, so that an integer smaller than b f(k)
2 c is never produced. Now running m over this

particular residue class will produce a subset of Sk. In order to only produce the triples generated by the
ith residue class, we must substitute f(k)n+ i for m in the formula given in Theorem 1 and allow n to range
over the integers greater than 1

2 −
i

f(k) . After making this substitution into our formula, we find that

(2kn +
2ki

f(k)
, 2kn2 +

4ki

f(k)
n +

2ki2

f(k)2
− k

2
, 2kn2 +

4ki

f(k)
n +

2ki2

f(k)2
+

k

2
) (3.6)

gives every triple generated by the ith residue class of the domain of Theorem 1 as n ranges over the integers
greater than 1

2 −
i

f(k) . Now since every triple produced by our original formula is unique and the residue
classes are disjoint, the subsets produced by these residue classes will clearly be disjoint. Also, if we take
the union of the triples generated by every residue class we will have the triples generated by every positive
integer greater than b f(k)

2 c, that is, we will have the set of all triples of difference k. Thus we find that, for
k even:

Sk =
⋃f(k)−1

i=0 {(2kn + 2ki
f(k) , 2kn2 + 4ki

f(k)n + 2ki2

f(k)2 −
k
2 ,

2kn2 + 4ki
f(k)n + 2ki2

f(k)2 + k
2 ) : n ∈ Z, n > 1

2 −
i

f(k)},
(3.7)

as stated in Theorem 2. Thus we have rewritten Sk as the union of f(k) disjoint, infinite subsets. Notice
also that, allowing Leg1(n) = 2kn + 2ki

f(k) and Leg2(n) = 2kn2 + 4ki
f(k)n + 2ki2

f(k)2 −
k
2 to denote the generating

formulas for the two legs in the ith residue class, the following property holds for each of the subsets in the
above union:

d
dnLeg2(n) = d

dn (2kn2 + 4ki
f(k)n + 2ki2

f(k)2 −
k
2 )

= 4kn + 4ki
f(k)

= 2(2kn + 2ki
f(k) )

= 2(Leg1(n)).

(3.8)

Thus we have seen that Theorem 2 holds for even k.

Case 2: Let k be an odd positive integer. Then our generating formula for Sk simplifies as follows:

(
k

f(k)
(2m + 1),

2k

f(k)2
(m− f(k)− 1

2
)(m +

f(k) + 1
2

),
2k

f(k)2
(m− f(k)− 1

2
)(m +

f(k) + 1
2

) + k).

Thus as m ranges over the positive integers greater than b f(k)
2 c, every triple of difference k is produced.

Once again, we partition the positive integers greater than b f(k)
2 c into their residue classes mod f(k). We
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must ensure that only those integers greater than b f(k)
2 c are produced, namely, we must have:

f(k)n + i > b f(k)
2 c

f(k)n + i > f(k)−1
2

2f(k)n + 2i > f(k)− 1

2f(k)n > f(k)− 1− 2i

n > 1
2 −

1
2f(k) −

i
f(k) .

(3.9)

Thus f(k)n+i, as n ranges over the integers greater than 1
2 −

1
2f(k) −

i
f(k) , produces the ith residue class mod

f(k) of the integers greater than b f(k)
2 c. Therefore, substituting f(k)n + i for m in the Theorem 1 formula

and allowing n to range over the integers greater than 1
2 −

1
2f(k) −

i
f(k) produces the triples generated by the

ith residue class. Making this substitution and simplifying, we get:

(2kn+
2ik

f(k)
+

k

f(k)
, 2kn2+

4ki

f(k)
n+

2k

f(k)
n+

2ki2

f(k)2
+

2ki

f(k)2
−k

2
+

1
4
, 2kn2+

4ki

f(k)
n+

2k

f(k)
n+

2ki2

f(k)2
+

2ki

f(k)2
+

k

2
+

1
4
)

(3.10)
as the generating fomula for the triples produced by the ith residue class. Thus, once again, since every
triple produced by the Theorem 1 formula is unique and the residue classes are clearly disjoint, the subsets
produced by the residue classes are disjoint. If we take the union of these subsets, we will get every triple
generated by the Theorem 1 formula, that is, every triple of a difference k. Thus we can rewrite the set of
all triples of difference k as:

Sk =
⋃f(k)−1

i=0 {(2kn + 2ik
f(k) + k

f(k) , 2kn2 + 4ki
f(k)n + 2k

f(k)n + 2ki2

f(k)2 + 2ki
f(k)2 −

k
2 + 1

4 ,

2kn2 + 4ki
f(k)n + 2k

f(k)n + 2ki2

f(k)2 + 2ki
f(k)2 −

k
2 + 1

4 + k) : n ∈ Z, n > 1
2 −

1
2f(k) −

i
f(k)}.

(3.11)

Once again allowing Leg1(n) = 2kn+ 2ik
f(k) + k

f(k) and Leg2(n) = 2kn2+ 4ki
f(k)n+ 2k

f(k)n+ 2ki2

f(k)2 + 2ki
f(k)2 −

k
2 + 1

4

to be the generating formulas for the legs of the triples produced by the ith residue class, we find that:

d
dnLeg2(n) = d

dn (2kn2 + 4ki
f(k)n + 2k

f(k)n + 2ki2

f(k)2 + 2ki
f(k)2 −

k
2 + 1

4 )

= (4kn + 4ki
f(k) + 2k

f(k) )

= 2(2kn + 2ki
f(k) + k

f(k) )

= 2(Leg1(n)).

(3.12)

Thus for k odd we can very similarly write Sk as the union of f(k) disjoint, infinite subsets where the
property d

dnLeg2(n) = 2(Leg1(n)) holds for the generating formulas of the legs of each subset.

It is interesting to note that this derivative property in general does not hold for the generating formulas
of the legs of the larger set Sk.

4 Conclusion

In summary, we have found and proved two separate but connected formulas that will generate every
Pythagorean triple of a fixed difference k. First of all, we found that when when we define

f(k) = 2b
n0
2 cp

bn1
2 c

1 p
bn2

2 c
2 ...p

bnr
2 c

r , (4.1)

17



where 2n0pn1
1 pn2

2 ...pnr
r is the prime factorization of 2k, then every triple of a difference k is given by:

( k
f(k) (2m + k mod2), 2k

f(k)2 (m− b f(k)
2 c)(m + d f(k)

2 e), 2k
f(k)2 (m− b f(k)

2 c)(m + d f(k)
2 e) + k)

as m runs through the positive integers greater than b f(k)
2 c. To prove this result, we let (x, y, z) be an

arbitrary Pythagorean triple with a difference of k and examined both the k even and k odd cases. For k
even, we had two subcases: z − x = k and z − y = k. For k odd, we had only z − x = k. We showed that
in every case the triple would be generated by our formula. We also showed that everything generated by
the above formula is indeed a Pythagorean triple with difference k. Having completed the proof of our main
theorem, we then used the theorem to find an alternate formula that also generates every triple of difference
k. Namely, we found that, for even k, every triple of a difference k is given by the following:

f(k)−1⋃
i=0

{(2kn+
2ki

f(k)
, 2kn2 +

4ki

f(k)
n+

2ki2

f(k)2
− k

2
, 2kn2 +

4ki

f(k)
n+

2ki2

f(k)2
+

k

2
) : n ∈ Z, n >

1
2
− i

f(k)
}, (4.2)

and that for odd k, every triple of difference k is given by:⋃f(k)−1
i=0 {(2kn + 2ik

f(k) + k
f(k) , 2kn2 + 4ki

f(k)n + 2k
f(k)n + 2ki2

f(k)2 + 2ki
f(k)2 −

k
2 + 1

4 ,

2kn2 + 4ki
f(k)n + 2k

f(k)n + 2ki2

f(k)2 + 2ki
f(k)2 + k

2 + 1
4 ) : n ∈ Z, n > 1

2 −
1

2f(k) −
i

f(k)}.
(4.3)

For each subset in the above unions we noted that the following property holds for the generating formulas
of the legs of the triples:

d

dn
Leg2(n) = 2(Leg1(n)). (4.4)

A better understanding of why the above property holds for the given subsets but not for the entire set of
Pythagorean triples of difference k, as well as an investigation into other unions that yield the entire set,
are areas of future research. Also, the formula in Theorem 1 appears to produce the negative Pythagorean
triples. The proof of the theorem, however, made use of Euclid’s classification, which only holds for positive
triples. Thus another area of future research is investigating whether the formula given in Theorem 1 and
its proof can be extended to include all negative Pythagorean triples.
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