publications by Ashutosh Chilkoti.


search scholar.google.com.

Papers Published

  1. Ozer, I; Slezak, A; Sirohi, P; Li, X; Zakharov, N; Yao, Y; Everitt, JI; Spasojevic, I; Craig, SL; Collier, JH; Campbell, JE; D'Alessio, DA; Chilkoti, A, An injectable PEG-like conjugate forms a subcutaneous depot and enables sustained delivery of a peptide drug., Biomaterials, vol. 294 (March, 2023), pp. 121985 [doi] .
    (last updated on 2025/04/17)

    Abstract:
    Many biologics have a short plasma half-life, and their conjugation to polyethylene glycol (PEG) is commonly used to solve this problem. However, the improvement in the plasma half-life of PEGylated drugs' is at an asymptote because the development of branched PEG has only had a modest impact on pharmacokinetics and pharmacodynamics. Here, we developed an injectable PEG-like conjugate that forms a subcutaneous depot for the sustained delivery of biologics. The PEG-like conjugate consists of poly[oligo(ethylene glycol) methyl ether methacrylate] (POEGMA) conjugated to exendin, a peptide drug used in the clinic to treat type 2 diabetes. The depot-forming exendin-POEGMA conjugate showed greater efficacy than a PEG conjugate of exendin as well as Bydureon, a clinically approved sustained-release formulation of exendin. The injectable depot-forming exendin-POEGMA conjugate did not elicit an immune response against the polymer, so that it remained effective and safe for long-term management of type 2 diabetes upon chronic administration. In contrast, the PEG conjugate induced an anti-PEG immune response, leading to early clearance and loss of efficacy upon repeat dosing. The exendin-POEGMA depot also showed superior long-term efficacy compared to Bydureon. Collectively, these results suggest that an injectable POEGMA conjugate of biologic drugs that forms a drug depot under the skin, providing favorable pharmacokinetic properties and sustained efficacy while remaining non-immunogenic, offers significant advantages over other commonly used drug delivery technologies.