Center for Biomolecular and Tissue Engineering Center for Biomolecular and Tissue Engineering
Pratt School of Engineering
Duke University

 HOME > pratt > CBTE    Search Help Login pdf version printable version 

Publications [#332959] of Tuan Vo-Dinh

Papers Published

  1. Wang, HN; Register, JK; Fales, AM; Gandra, N; Cho, EH; Boico, A; Palmer, GM; Klitzman, B; Vo-Dinh, T, Surface-enhanced Raman scattering nanosensors for in vivo detection of nucleic acid targets in a large animal model, Nano Research, vol. 11 no. 8 (August, 2018), pp. 4005-4016, Springer Nature America, Inc [doi]
    (last updated on 2019/06/26)

    © 2018, Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature. Although nanotechnology has led to important advances in in vitro diagnostics, the development of nanosensors for in vivo detection remains very challenging. Here, we demonstrated the proof-of-principle of in vivo detection of nucleic acid targets using a promising type of surface-enhanced Raman scattering (SERS) nanosensor implanted in the skin of a large animal model (pig). The in vivo nanosensor used in this study involves the “inverse molecular sentinel” detection scheme using plasmonics-active nanostars, which have tunable absorption bands in the near infrared region of the “tissue optical window”, rendering them efficient as an optical sensing platform for in vivo optical detection. Ex vivo measurements were also performed using human skin grafts to demonstrate the detection of SERS nanosensors through tissue. In this study, a new core–shell nanorattle probe with Raman reporters trapped between the core and shell was utilized as an internal standard system for self-calibration. These results illustrate the usefulness and translational potential of the SERS nanosensor for in vivo biosensing. [Figure not available: see fulltext.].

Duke University * Pratt * CBTE * Reload * Login