search .
Papers Published
- Su, F; Chakrabarty, K; Fair, RB, Microfluidics-based biochips: Technology issues, implementation platforms, and design-automation challenges,
Ieee Transactions on Computer Aided Design of Integrated Circuits and Systems, vol. 25 no. 2
(February, 2006),
pp. 211-223, Institute of Electrical and Electronics Engineers (IEEE) [doi] .
(last updated on 2022/12/30)Abstract:
Microfluidics-based biochips are soon expected to revolutionize clinical diagnosis, deoxyribonucleic acid (DNA) sequencing, and other laboratory procedures involving molecular biology. In contrast to continuous-flow systems that rely on permanently etched microchannels, micropumps, and microvalves, digital microfluidics offers a scalable system architecture and dynamic reconfigurability; groups of unit cells in a microfluidics array can be reconfigured to change their functionality during the concurrent execution of a set of bioassays. As more bioassays are executed concurrently on a biochip, system integration and design complexity are expected to increase dramatically. This paper presents an overview of an integrated system-level design methodology that attempts to address key issues in the synthesis, testing and reconfiguration of digital microfluidics-based biochips. Different actuation mechanisms for microfluidics-based biochips, and associated design-automation trends and challenges are also discussed. The proposed top-down design-automation approach is expected to relieve biochip users from the burden of manual optimization of bioassays, time-consuming hardware design, and costly testing and maintenance procedures, and it will facilitate the integration of fluidic components with a microelectronic component in next-generation systems-on-chips (SOCs). © 2006 IEEE.