Automorphic representations and arithmetic geometry.

Office Location: | 225 Physics, Duke Mathematics Department, Durham, NC 27708-0320 |

Office Phone: | (919) 660-2800 |

Email Address: | |

Web Page: | https://sites.duke.edu/jgetz/ |

**Office Hours:**- Hours vary

**Education:**Ph.D. University of Wisconsin - Madison 2007 MS University of Wisconsin at Madison 2006 M.A. University of Wisconsin - Madison 2006 A.B. Harvard University 2004

**Specialties:**- Number Theory

**Research Interests:***Number theory*Automorphic representations and arithmetic geometry.

**Areas of Interest:**Limits of trace formulae

Relative trace formulae

Shimura varieties

**Keywords:**Algebraic cycles • arithmetic geometry • automorphic representations • number theory • Number theory • Shimura varieties • Trace formulas

**Current Ph.D. Students**

**Postdocs Mentored**- Michael Lipnowski (September 2013 - present)
- Fritz Hoermann (September 2010 - May 2011)

**Undergraduate Research Supervised**- Josh Izzard (May 2013 - April 2014)
- Jamie Klassen (June 2012 - August 2012)

**Recent Publications**- Getz, JR,
*A summation formula for the Rankin-Selberg monoid and a nonabelian trace formula*, American Journal of Mathematics, vol. 142 no. 5 (October, 2020), pp. 1371-1407 [doi] [abs] - Getz, JR; Liu, B,
*A refined Poisson summation formula for certain Braverman-Kazhdan spaces*, Science China Mathematics (January, 2020) [doi] [abs] - Getz, JR; Liu, B,
*A summation formula for triples of quadratic spaces*, Advances in Mathematics, vol. 347 (April, 2019), pp. 150-191 [doi] [abs] - Getz, JR,
*Secondary terms in asymptotics for the number of zeros of quadratic forms over number fields*, Journal of the London Mathematical Society, vol. 98 no. 2 (October, 2018), pp. 275-305, WILEY [doi] [abs] - Getz, JR,
*Nonabelian fourier transforms for spherical representations*, Pacific Journal of Mathematics, vol. 294 no. 2 (January, 2018), pp. 351-373, Mathematical Sciences Publishers [doi] [abs]

- Getz, JR,

**Recent Grant Support***Summation Formulae and Triple Product L-functions in Higher Rank*, National Science Foundation, 2019/07-2022/06.*Langlands Functoriality in Nonsolvable and Relative Settings*, National Science Foundation, DMS-1405708, 2014/07-2018/06.

**Conferences Organized**- AIM workshop on Automorphic Kernel functions, co-organizer, December, 2015