|
| Publications [#319745] of Alexandre Belloni
Papers Published
- Belloni, A; Chernozhukov, V; Wang, L, Square-root lasso: Pivotal recovery of sparse signals via conic programming,
Biometrika, vol. 98 no. 4
(December, 2011),
pp. 791-806, Oxford University Press (OUP) [doi]
(last updated on 2023/06/01)
Abstract: We propose a pivotal method for estimating high-dimensional sparse linear regression models, where the overall number of regressors p is large, possibly much larger than n, but only s regressors are significant. The method is a modification of the lasso, called the square-root lasso. The method is pivotal in that it neither relies on the knowledge of the standard deviation σ nor does it need to pre-estimate σ. Moreover, the method does not rely on normality or sub-Gaussianity of noise. It achieves near-oracle performance, attaining the convergence rate σ(s/n) log p 1/2 in the prediction norm, and thus matching the performance of the lasso with known σ. These performance results are valid for both Gaussian and non-Gaussian errors, under some mild moment restrictions. We formulate the square-root lasso as a solution to a convex conic programming problem, which allows us to implement the estimator using efficient algorithmic methods, such as interior-point and first-order methods. © 2011 Biometrika Trust.
|