Decision Sciences Tenure Track Faculty Database
Decision Sciences
Fuqua School of Business
Duke University

 HOME > Fuqua > Decision Sciences > Tenure Track Faculty    Search Help Login 

Publications [#319758] of Alexandre Belloni

Papers Published

  1. Belloni, A; Freund, RM; Vempala, SS, An efficient re-scaled perceptron algorithm for conic systems, Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 4539 LNAI (January, 2007), pp. 393-408, Springer Berlin Heidelberg [doi]
    (last updated on 2023/06/01)

    Abstract:
    The classical perceptron algorithm is an elementary algorithm for solving a homogeneous linear inequality system Ax > 0, with many important applications in learning theory (e.g., [11,8]). A natural condition measure associated with this algorithm is the Euclidean width T of the cone of feasible solutions, and the iteration complexity of the perceptron algorithm is bounded by 1/τ2. Dunagan and Vempala [5] have developed a re-scaled version of the perceptron algorithm with an improved complexity of O(n ln(1/τ)) iterations (with high probability), which is theoretically efficient in τ, and in particular is polynomial-time in the bit-length model. We explore extensions of the concepts of these perceptron methods to the general homogeneous conic system Ax ∈ int K where if is a regular convex cone. We provide a conic extension of the re-scaled perceptron algorithm based on the notion of a deep-separation oracle of a cone, which essentially computes a certificate of strong separation. We give a general condition under which the re-scaled perceptron algorithm is theoretically efficient, i.e., polynomial-time; this includes the cases when K is the cross-product of half-spaces, second-order cones, and the positive semi-definite cone. © Springer-Verlag Berlin Heidelberg 2007.


Duke University * Decision Sciences * Faculty * Affiliated * Staff * Reload * Login
x