Publications [#377340] of Blanka Aguero

  Home Publications
People
  Faculty
  Staff
  Graduate Students
Alumni

Publications

search PubMed.

Papers Published

  1. Imwattana, K; Aguero, B; Nieto-Lugilde, M; Duffy, A; Jaramillo-Chico, J; Hassel, K; Afonina, O; Lamkowski, P; Jonathan Shaw, A, Parallel patterns of genetic diversity and structure in circumboreal species of the Sphagnum capillifolium complex., American journal of botany, vol. 111 no. 5 (May, 2024), pp. e16348 [doi] .
    (last updated on 2024/08/25)

    Abstract:

    Premise

    Shared geographical patterns of population genetic variation among related species is a powerful means to identify the historical events that drive diversification. The Sphagnum capillifolium complex is a group of closely related peat mosses within the Sphagnum subgenus Acutifolia and contains several circumboreal species whose ranges encompass both glaciated and unglaciated regions across the northern hemisphere. In this paper, we (1) inferred the phylogeny of subg. Acutifolia and (2) investigated patterns of population structure and genetic diversity among five circumboreal species within the S. capillifolium complex.

    Methods

    We generated RAD sequencing data from most species of the subg. Acutifolia and samples from across the distribution ranges of circumboreal species within the S. capillifolium complex.

    Results

    We resolved at least 14 phylogenetic clusters within the S. capillifolium complex. Five circumboreal species show some common patterns: One population system comprises plants in eastern North America and Europe, and another comprises plants in the Pacific Northwest or around the Beringian and Arctic regions. Alaska appears to be a hotspot for genetic admixture, genetic diversity, and sometimes endemic subclades.

    Conclusions

    Our results support the hypothesis that populations of five circumboreal species within the S. capillifolium complex survived in multiple refugia during the last glacial maximum. Long-distance dispersal out of refugia, population bottlenecks, and possible adaptations to conditions unique to each refugium could have contributed to current geographic patterns. These results indicate the important role of historical events in shaping the complex population structure of plants with broad distribution ranges.