Abstract:
We develop an approach to realizing a topological phase transition and non-Abelian braiding statistics with dynamically induced Floquet Majorana fermions (FMFs). When the periodic driving potential does not break fermion parity conservation, FMFs can encode quantum information. Quasienergy analysis shows that a stable FMF zero mode and two other satellite modes exist in a wide parameter space with large quasienergy gaps, which prevents transitions to other Floquet states under adiabatic driving. We also show that in the asymptotic limit FMFs preserve non-Abelian braiding statistics and, thus, behave like their equilibrium counterparts. © 2013 American Physical Society.
Duke University * Arts & Sciences * Physics * Faculty * Staff * Grad * Researchers * Reload * Login
Copyright (c) 2001-2002 by Duke University Physics.