Abstract:
We study the quantum phase transition of interacting electrons in quantum wires from a one-dimensional (1D) linear configuration to a quasi-1D zigzag arrangement using quantum Monte Carlo methods. As the density increases from its lowest values, first, the electrons form a linear Wigner crystal, then, the symmetry about the axis of the wire is broken as the electrons order in a quasi-1D zigzag phase, and, finally, the electrons form a disordered liquidlike phase. We show that the linear to zigzag phase transition is not destroyed by the strong quantum fluctuations present in narrow wires; it has characteristics which are qualitatively different from the classical transition. © 2013 American Physical Society.
Duke University * Arts & Sciences * Physics * Faculty * Staff * Grad * Researchers * Reload * Login
Copyright (c) 2001-2002 by Duke University Physics.