Abstract:
Models of the r process are sensitive to the production rate of 9Be because, in explosive environments rich in neutrons, α(αn,γ) 9Be is the primary mechanism for bridging the stability gaps at A=5 and A=8. The α(αn,γ)9Be reaction represents a two-step process, consisting of α+α→8Be followed by 8Be(n,γ)9Be. We report here on a new absolute cross-section measurement for the 9Be(γ,n)8Be reaction conducted using a highly efficient, 3He-based neutron detector and nearly monoenergetic photon beams, covering energies from Eγ=1.5 MeV to Eγ=5.2 MeV, produced by the High Intensity γ-ray Source of Triangle Universities Nuclear Laboratory. In the astrophysically important threshold energy region, the present cross sections are 40% larger than those found in most previous measurements and are accurate to ±10% (95% confidence). The revised thermonuclear α(αn,γ)9Be reaction rate could have implications for the r process in explosive environments such as type II supernovae. © 2012 American Physical Society.
Duke University * Arts & Sciences * Physics * Faculty * Staff * Grad * Researchers * Reload * Login
Copyright (c) 2001-2002 by Duke University Physics.