Abstract:
The feasibility of using polarized deuterium (D) and tritium (T) plasmas in fusion reactors may be seriously affected by recycling in material walls. Theoretical and experimental results are reviewed which show how the depolarization rates of absorbed D and T depend on first wall parameters such as the temperature, the bulk and surface diffusivities, the density of electronic states at the Fermi surface, the spectral density of microscopic fluctuating electric field gradients, and the concentration of paramagnetic impurities. Nuclear magnetic resonance (NMR) spectroscopy of hydrogenated and deuterated amorphous semiconductors suggests that low-Z nonmetallic materials may provide a satisfactory first wall or limiter coating under reactor conditions with characteristic depolarization times of several seconds. Experiments are proposed to test the consequences of our analysis. © 1984, American Vacuum Society. All rights reserved.
Duke University * Arts & Sciences * Physics * Faculty * Staff * Grad * Researchers * Reload * Login
Copyright (c) 2001-2002 by Duke University Physics.