Abstract:
In this paper, we discuss error estimates associated with three different aggregation-diffusion splitting schemes for the Keller-Segel equations. We start with one algorithm based on the Trotter product formula, and we show that the convergence rate is CΔt, where Δt is the time-step size. Secondly, we prove the convergence rate CΔt2 for the Strang's splitting. Lastly, we study a splitting scheme with the linear transport approximation, and prove the convergence rate CΔt.
Duke University * Arts & Sciences * Physics * Faculty * Staff * Grad * Researchers * Reload * Login
Copyright (c) 2001-2002 by Duke University Physics.