Abstract:
In this paper, we study a tumor growth equation along with various models for the nutrient component, including a in vitro model and a in vivo model. At the cell density level, the spatial availability of the tumor density n is governed by the Darcy law via the pressure p(n) = n γ . For finite γ, we prove some a priori estimates of the tumor growth model, such as boundedness of the nutrient density, and non-negativity and growth estimate of the tumor density. As γ → ∞, the cell density models formally converge to Hele-Shaw flow models, which determine the free boundary dynamics of the tumor tissue in the incompressible limit. We derive several analytical solutions to the Hele-Shaw flow models, which serve as benchmark solutions to the geometric motion of tumor front propagation. Finally, we apply a conservative and positivity preserving numerical scheme to the cell density models, with numerical results verifying the link between cell density models and the free boundary dynamical models.
Duke University * Arts & Sciences * Physics * Faculty * Staff * Grad * Researchers * Reload * Login
Copyright (c) 2001-2002 by Duke University Physics.