Abstract:
We report the first measurement of the atmospheric neutrino-oxygen neutral-current quasielastic (NCQE) cross section in the gadolinium-loaded Super-Kamiokande (SK) water Cherenkov detector. In June 2020, SK began a new experimental phase, named SK-Gd, by loading 0.011% by mass of gadolinium into the ultrapure water of the SK detector. The introduction of gadolinium to ultrapure water has the effect of improving the neutron-tagging efficiency. Using a 552.2 day dataset from August 2020 to June 2022, we measure the NCQE cross section to be 0.74±0.22(stat)-0.15+0.85(syst)×10-38 cm2/oxygen in the energy range from 160 MeV to 10 GeV, which is consistent with the atmospheric neutrino-flux-averaged theoretical NCQE cross section and the measurement in the SK pure-water phase within the uncertainties. Furthermore, we compare the models of the nucleon-nucleus interactions in water and find that the binary cascade model and the Liège intranuclear cascade model provide a somewhat better fit to the observed data than the Bertini cascade model. Since the atmospheric neutrino-oxygen NCQE reactions are one of the main backgrounds in the search for diffuse supernova neutrino background (DSNB), these new results will contribute to future studies - and the potential discovery - of the DSNB in SK.
Duke University * Arts & Sciences * Physics * Faculty * Staff * Grad * Researchers * Reload * Login
Copyright (c) 2001-2002 by Duke University Physics.