Abstract:
We study the uniformly weighted ensemble of force balanced configurations on a triangular network of nontensile contact forces. For periodic boundary conditions corresponding to isotropic compressive stress, we find that the probability distribution for single-contact forces decays faster than exponentially. This superexponential decay persists in lattices diluted to the rigidity percolation threshold. On the other hand, for anisotropic imposed stresses, a broader tail emerges in the force distribution, becoming a pure exponential in the limit of infinite lattice size and infinitely strong anisotropy.
Duke University * Arts & Sciences * Physics * Faculty * Staff * Grad * Researchers * Reload * Login
Copyright (c) 2001-2002 by Duke University Physics.