Math @ Duke
|
Publications [#303538] of Hubert Bray
Papers Published
- Bray, H, A Family of Quasi-local Mass Functionals with Monotone Flows, edited by Zambrini, JC,
Proceedings of the 14th International Congress on Mathematical Physics
(January, 2006),
pp. 323-329, World Scientific, ISBN 981256201X [doi]
(last updated on 2025/04/03)
Abstract: We define a one parameter family of quasi-local mass functionals mc (Σ), 0 ≤ c ≤ ∞, which are nondecreasing on surfaces in 3-manifolds with nonnegative scalar curvature with respect to a one parameter family of flows. In the case that c = 0, m0(Σ) equals the Hawking mass of Σ2 and the corresponding flow is inverse mean curvature flow. Then, following the arguments of Geroch [8], Jang and Wald [12], and Huisken and Ilmanen [9], we note that the generalization of their results for inverse mean curvature flow would imply that if mADM is the total mass of the complete, asymptotically flat 3-manifold with nonnegative scalar curvature, then mADM ≥ mc(Σ) for all nonnegative c and all connected surfaces Σ which are not enclosed by surfaces with less area.
|
|
dept@math.duke.edu
ph: 919.660.2800
fax: 919.660.2821
| |
Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320
|
|