Department of Mathematics
 Search | Help | Login | pdf version | printable version

Math @ Duke



Publications [#257866] of David B. Dunson


Papers Published

  1. Palomo, J; Dunson, DB; Bollen, K, Bayesian Structural Equation Modeling (December, 2007), pp. 163-188, Elsevier [doi]
    (last updated on 2019/05/27)

    This chapter focuses on Bayesian structural equation modeling. Structural equation models (SEMs) with latent variables are routinely used in social science research, and are of increasing importance in biomedical applications. Standard practice in implementing SEMs relies on frequentist methods. The chapter provides a simple and concise description of an alternative Bayesian approach. A description of the Bayesian specification of SEMs, and an outline of a Gibbs sampling strategy for model fitting is also presented. Bayesian inferences are illustrated through an industrialization and democratization case study. The Bayesian approach has some distinct advantages, due to the availability of samples from the joint posterior distribution of the model parameters and latent variables, which are highlighted in the chapter. These posterior samples provide important information not contained in the measurement and structural parameters. © 2007 Elsevier B.V. All rights reserved.
ph: 919.660.2800
fax: 919.660.2821

Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320