Department of Mathematics
 Search | Help | Login | pdf version | printable version

Math @ Duke



Publications [#258029] of David B. Dunson


Papers Published

  1. Du, L; Ren, L; Dunson, DB; Carin, L, A Bayesian model for simultaneous image clustering, annotation and object segmentation, Advances in Neural Information Processing Systems 22 - Proceedings of the 2009 Conference (2009), pp. 486-494
    (last updated on 2019/05/19)

    A non-parametric Bayesian model is proposed for processing multiple images. The analysis employs image features and, when present, the words associated with accompanying annotations. The model clusters the images into classes, and each image is segmented into a set of objects, also allowing the opportunity to assign a word to each object (localized labeling). Each object is assumed to be represented as a heterogeneous mix of components, with this realized via mixture models linking image features to object types. The number of image classes, number of object types, and the characteristics of the object-feature mixture models are inferred nonparametrically. To constitute spatially contiguous objects, a new logistic stick-breaking process is developed. Inference is performed efficiently via variational Bayesian analysis, with example results presented on two image databases.
ph: 919.660.2800
fax: 919.660.2821

Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320