Department of Mathematics
 Search | Help | Login | pdf version | printable version

Math @ Duke



Publications [#322539] of David B. Dunson


Papers Published

  1. Kabisa, S; Dunson, DB; Morris, JS, Online Variational Bayes Inference for High-Dimensional Correlated Data, Journal of Computational and Graphical Statistics : a Joint Publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America, vol. 25 no. 2 (April, 2016), pp. 426-444, Informa UK Limited [doi]
    (last updated on 2019/05/26)

    © 2016 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America. High-dimensional data with hundreds of thousands of observations are becoming commonplace in many disciplines. The analysis of such data poses many computational challenges, especially when the observations are correlated over time and/or across space. In this article, we propose flexible hierarchical regression models for analyzing such data that accommodate serial and/or spatial correlation. We address the computational challenges involved in fitting these models by adopting an approximate inference framework. We develop an online variational Bayes algorithm that works by incrementally reading the data into memory one portion at a time. The performance of the method is assessed through simulation studies. The methodology is applied to analyze signal intensity in MRI images of subjects with knee osteoarthritis, using data from the Osteoarthritis Initiative. Supplementary materials for this article are available online.
ph: 919.660.2800
fax: 919.660.2821

Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320