Department of Mathematics
 Search | Help | Login | pdf version | printable version

Math @ Duke



Publications [#322542] of David B. Dunson


Papers Published

  1. Tang, K; Dunson, DB; Su, Z; Liu, R; Zhang, J; Dong, J, Subspace segmentation by dense block and sparse representation., Neural Networks : the Official Journal of the International Neural Network Society, vol. 75 (March, 2016), pp. 66-76 [doi]
    (last updated on 2019/05/26)

    Subspace segmentation is a fundamental topic in computer vision and machine learning. However, the success of many popular methods is about independent subspace segmentation instead of the more flexible and realistic disjoint subspace segmentation. Focusing on the disjoint subspaces, we provide theoretical and empirical evidence of inferior performance for popular algorithms such as LRR. To solve these problems, we propose a novel dense block and sparse representation (DBSR) for subspace segmentation and provide related theoretical results. DBSR minimizes a combination of the 1,1-norm and maximum singular value of the representation matrix, leading to a combination of dense block and sparsity. We provide experimental results for synthetic and benchmark data showing that our method can outperform the state-of-the-art.
ph: 919.660.2800
fax: 919.660.2821

Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320