Department of Mathematics
 Search | Help | Login | pdf version | printable version

Math @ Duke



Publications [#322551] of David B. Dunson


Papers Published

  1. Zhou, J; Bhattacharya, A; Herring, AH; Dunson, DB, Bayesian Factorizations of Big Sparse Tensors, Journal of the American Statistical Association, vol. 110 no. 512 (October, 2015), pp. 1562-1576, Informa UK Limited [doi]
    (last updated on 2019/05/21)

    © 2015, © American Statistical Association. It has become routine to collect data that are structured as multiway arrays (tensors). There is an enormous literature on low rank and sparse matrix factorizations, but limited consideration of extensions to the tensor case in statistics. The most common low rank tensor factorization relies on parallel factor analysis (PARAFAC), which expresses a rank k tensor as a sum of rank one tensors. In contingency table applications in which the sample size is massively less than the number of cells in the table, the low rank assumption is not sufficient and PARAFAC has poor performance. We induce an additional layer of dimension reduction by allowing the effective rank to vary across dimensions of the table. Taking a Bayesian approach, we place priors on terms in the factorization and develop an efficient Gibbs sampler for posterior computation. Theory is provided showing posterior concentration rates in high-dimensional settings, and the methods are shown to have excellent performance in simulations and several real data applications.
ph: 919.660.2800
fax: 919.660.2821

Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320