Math @ Duke

Publications [#342828] of David B. Dunson
search arxiv.org.Papers Published
 Wang, L; Zhang, Z; Dunson, D, Common and individual structure of brain networks,
The Annals of Applied Statistics, vol. 13 no. 1
(January, 2019),
pp. 85112 [doi]
(last updated on 2019/06/26)
Abstract: © Institute of Mathematical Statistics, 2019. This article focuses on the problem of studying shared and individualspecific structure in replicated networks or graphvalued data. In particular, the observed data consist of n graphs, G i , i = 1, . . ., n, with each graph consisting of a collection of edges between V nodes. In brain connectomics, the graph for an individual corresponds to a set of interconnections among brain regions. Such data can be organized as a V × V binary adjacency matrix Ai for each i, with ones indicating an edge between a pair of nodes and zeros indicating no edge. When nodes have a shared meaning across replicates i = 1, . . ., n, it becomes of substantial interest to study similarities and differences in the adjacency matrices. To address this problem, we propose a method to estimate a common structure and lowdimensional individualspecific deviations from replicated networks. The proposed Multiple GRAph Factorization (MGRAF) model relies on a logistic regression mapping combined with a hierarchical eigenvalue decomposition. We develop an efficient algorithm for estimation and study basic properties of our approach. Simulation studies show excellent operating characteristics and we apply the method to human brain connectomics data.


dept@math.duke.edu
ph: 919.660.2800
fax: 919.660.2821
 
Mathematics Department
Duke University, Box 90320
Durham, NC 277080320

