Department of Mathematics
 Search | Help | Login | pdf version | printable version

Math @ Duke



Publications [#264839] of Guillermo Sapiro

Papers Published

  1. Bertalmio, M; Sapiro, G; Randall, G, Morphing active contours, edited by Nielsen, M; Johansen, P; Olsen, OF; Weickert, J, Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 1682 (January, 1999), pp. 46-53, SPRINGER, ISBN 354066498X [html], [doi]
    (last updated on 2019/06/18)

    © Springer-Verlag Berlin Heidelberg 1999. A method for deforming curves in a given image to a desired position in a second image is introduced in this paper. The algorithm is based on deforming the first image toward the second one via a partial differential equation, while tracking the deformation of the curves of interest in the first image with an additional, coupled, partial differential equation. The tracking is performed by projecting the velocities of the first equation into the second one. In contrast with previous PDE based approaches, both the images and the curves on the frames/slices of interest are used for tracking. The technique can be applied to object tracking and sequential segmentation. The topology of the deforming curve can change, without any special topology handling procedures added to the scheme. This permits for example the automatic tracking of scenes where, due to occlusions, the topology of the objects of interest changes from frame to frame. In addition, this work introduces the concept of projecting velocities to obtain systems of coupled partial differential equations for image analysis applications. We show examples for object tracking and segmentation of electronic microscopy. We also briefly discuss possible uses of this framework îîfor three dimensional morphing.
ph: 919.660.2800
fax: 919.660.2821

Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320