Department of Mathematics
 Search | Help | Login | pdf version | printable version

Math @ Duke



Publications [#265063] of Guillermo Sapiro

Papers Published

  1. Mairal, J; Bach, F; Ponce, J; Sapiro, G, Online learning for matrix factorization and sparse coding, Journal of Machine Learning Research, vol. 11 (February, 2010), pp. 19-60, ISSN 1532-4435
    (last updated on 2019/07/19)

    Sparse coding-that is, modelling data vectors as sparse linear combinations of basis elements-is widely used in machine learning, neuroscience, signal processing, and statistics. This paper focuses on the large-scale matrix factorization problem that consists of learning the basis set in order to adapt it to specific data. Variations of this problem include dictionary learning in signal processing, non-negative matrix factorization and sparse principal component analysis. In this paper, we propose to address these tasks with a new online optimization algorithm, based on stochastic approximations, which scales up gracefully to large data sets with millions of training samples, and extends naturally to various matrix factorization formulations, making it suitable for a wide range of learning problems. A proof of convergence is presented, along with experiments with natural images and genomic data demonstrating that it leads to state-of-the-art performance in terms of speed and optimization for both small and large data sets. © 2010 Julien Mairal, Francis Bach, Jean Ponce and Guillermo Sapiro.
ph: 919.660.2800
fax: 919.660.2821

Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320