Department of Mathematics
 Search | Help | Login | pdf version | printable version

Math @ Duke



Publications [#265077] of Guillermo Sapiro

Papers Published

  1. Wright, J; Ma, Y; Mairal, J; Sapiro, G; Huang, TS; Yan, S, Sparse representation for computer vision and pattern recognition, Proceedings of the Ieee, vol. 98 no. 6 (June, 2010), pp. 1031-1044, Institute of Electrical and Electronics Engineers (IEEE), ISSN 0018-9219 [doi]
    (last updated on 2019/07/21)

    Techniques from sparse signal representation are beginning to see significant impact in computer vision, often on nontraditional applications where the goal is not just to obtain a compact high-fidelity representation of the observed signal, but also to extract semantic information. The choice of dictionary plays a key role in bridging this gap: unconventional dictionaries consisting of, or learned from, the training samples themselves provide the key to obtaining state-of-the-art results and to attaching semantic meaning to sparse signal representations. Understanding the good performance of such unconventional dictionaries in turn demands new algorithmic and analytical techniques. This review paper highlights a few representative examples of how the interaction between sparse signal representation and computer vision can enrich both fields, and raises a number of open questions for further study. © 2010 IEEE.
ph: 919.660.2800
fax: 919.660.2821

Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320