Department of Mathematics
 Search | Help | Login | pdf version | printable version

Math @ Duke



Publications [#246963] of Jian-Guo Liu

Papers Published

  1. Ghil, M; Liu, JG; Wang, C; Wang, S, Boundary-layer separation and adverse pressure gradient for 2-D viscous incompressible flow, Physica D: Nonlinear Phenomena, vol. 197 no. 1-2 (October, 2004), pp. 149-173, Elsevier BV, ISSN 0167-2789 [doi]
    (last updated on 2019/06/24)

    We study the detailed process of bifurcation in the flow's topological structure for a two-dimensional (2-D) incompressible flow subject to no-slip boundary conditions and its connection with boundary-layer separation. The boundary-layer separation theory of M. Ghil, T. Ma and S. Wang, based on the structural-bifurcation concept, is translated into vorticity form. The vorticily formulation of the theory shows that structural bifurcation occurs whenever a degenerate singular point for the vorticity appears on the boundary; this singular point is characterized by nonzero tangential second-order derivative and nonzero time derivative of the vorticity. Furthermore, we prove the presence of an adverse pressure gradient at the critical point, due to reversal in the direction of the pressure force with respect to the basic shear flow at this point. A numerical example of 2-D driven-cavity flow, governed by the Navier Stokes equations, is presented; boundary-layer separation occurs, the bifurcation criterion is satisfied, and an adverse pressure gradient is shown to be present. © 2004 Elsevier B.V. All rights reserved.
ph: 919.660.2800
fax: 919.660.2821

Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320