Department of Mathematics
 Search | Help | Login | pdf version | printable version

Math @ Duke



Publications [#329519] of Jian-Guo Liu

Papers Published

  1. Li, L; Liu, JG; Lu, J, Fractional Stochastic Differential Equations Satisfying Fluctuation-Dissipation Theorem, Journal of Statistical Physics, vol. 169 no. 2 (October, 2017), pp. 316-339, Springer Nature America, Inc [doi]
    (last updated on 2019/06/19)

    © 2017, Springer Science+Business Media, LLC. We propose in this work a fractional stochastic differential equation (FSDE) model consistent with the over-damped limit of the generalized Langevin equation model. As a result of the ‘fluctuation-dissipation theorem’, the differential equations driven by fractional Brownian noise to model memory effects should be paired with Caputo derivatives, and this FSDE model should be understood in an integral form. We establish the existence of strong solutions for such equations and discuss the ergodicity and convergence to Gibbs measure. In the linear forcing regime, we show rigorously the algebraic convergence to Gibbs measure when the ‘fluctuation-dissipation theorem’ is satisfied, and this verifies that satisfying ‘fluctuation-dissipation theorem’ indeed leads to the correct physical behavior. We further discuss possible approaches to analyze the ergodicity and convergence to Gibbs measure in the nonlinear forcing regime, while leave the rigorous analysis for future works. The FSDE model proposed is suitable for systems in contact with heat bath with power-law kernel and subdiffusion behaviors.
ph: 919.660.2800
fax: 919.660.2821

Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320