Math @ Duke
|
Publications [#335607] of Jian-Guo Liu
Papers Published
- Gao, Y; Liu, JG; Lu, XY; Xu, X, Maximal monotone operator theory and its applications to thin film equation in epitaxial growth on vicinal surface,
Calculus of Variations and Partial Differential Equations, vol. 57 no. 2
(April, 2018), Springer Nature [doi]
(last updated on 2025/05/01)
Abstract: In this work we consider (Formula presented.) which is derived from a thin film equation for epitaxial growth on vicinal surface. We formulate the problem as the gradient flow of a suitably-defined convex functional in a non-reflexive space. Then by restricting it to a Hilbert space and proving the uniqueness of its sub-differential, we can apply the classical maximal monotone operator theory. The mathematical difficulty is due to the fact that whh can appear as a positive Radon measure. We prove the existence of a global strong solution with hidden singularity. In particular, (1) holds almost everywhere when whh is replaced by its absolutely continuous part.
|
|
dept@math.duke.edu
ph: 919.660.2800
fax: 919.660.2821
| |
Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320
|
|