Math @ Duke
|
Publications [#363625] of Sayan Mukherjee
Papers Published
- Mukherjee, S; Zhou, CM; Gall, D, Temperature-induced chaos during nanorod growth by physical vapor deposition,
Journal of Applied Physics, vol. 105 no. 9
(June, 2009) [doi]
(last updated on 2025/02/21)
Abstract: Atomic shadowing during kinetically limited physical vapor deposition causes a chaotic instability in the layer morphology that leads to nanorod growth. Glancing angle deposition (GLAD) experiments indicate that the rod morphology, in turn, exhibits a chaotic instability with increasing surface diffusion. The measured rod width versus growth temperature converges onto a single curve for all metals when normalized by the melting point Tm. A model based on mean field nucleation theory reveals a transition from a two- to three-dimensional growth regime at (0.20±0.03) × Tm and an activation energy for diffusion on curved surfaces of (2.46±0.02) ×k Tm. The consistency in the GLAD data suggests that the effective mass transport on a curved surface is described by a single normalized activation energy that is applicable to all elemental metals. © 2009 American Institute of Physics.
|
|
dept@math.duke.edu
ph: 919.660.2800
fax: 919.660.2821
| |
Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320
|
|