|
Math @ Duke
|
Papers Published
- Figueroa, F; Filipazzi, S; Moraga, J; Peng, J, Complements and coregularity of Fano varieties,
Forum of Mathematics Sigma, vol. 13
(February, 2025) [doi] [abs]
- Bernasconi, F; Filipazzi, S, Rational points on 3-folds with nef anti-canonical class over finite fields,
Proceedings of the London Mathematical Society, vol. 130 no. 1
(January, 2025) [doi] [abs]
- Filipazzi, S; Mauri, M; Moraga, J, Index of coregularity zero log Calabi–Yau pairs,
Algebra and Number Theory, vol. 19 no. 2
(January, 2025),
pp. 383-413 [doi] [abs]
- Filipazzi, S; Hacon, CD; Svaldi, R, Boundedness of elliptic Calabi–Yau threefolds,
Journal of the European Mathematical Society, vol. 27 no. 9
(January, 2025),
pp. 3583-3650, European Mathematical Society - EMS - Publishing House GmbH [doi] [abs]
- Filipazzi, S; Waldron, J, Connectedness Principle for 3-Folds in Characteristic p > 5,
Michigan Mathematical Journal, vol. 74 no. 4
(September, 2024),
pp. 675-701 [doi] [abs]
- Filipazzi, S, On the boundedness of n-folds with κ(X) = n − 1,
Algebraic Geometry, vol. 11 no. 3
(January, 2024),
pp. 318-345 [doi] [abs]
- Filipazzi, S; Inchiostro, G, MODULI OF Q-GORENSTEIN PAIRS AND APPLICATIONS,
Journal of Algebraic Geometry, vol. 33 no. 2
(January, 2024),
pp. 347-399 [doi] [abs]
- Bernasconi, F; Brivio, I; Filipazzi, S, Arithmetic and geometric deformations of threefolds,
Bulletin of the London Mathematical Society, vol. 56 no. 1
(January, 2024),
pp. 423-443 [doi] [abs]
- Filipazzi, S; Svaldi, R, On the connectedness principle and dual complexes for generalized pairs,
Forum of Mathematics Sigma, vol. 11
(April, 2023) [doi] [abs]
- Braun, L; Filipazzi, S; Moraga, J; Svaldi, R, The Jordan property for local fundamental groups,
Geometry and Topology, vol. 26 no. 1
(January, 2022),
pp. 283-319 [doi] [abs]
- Filipazzi, S, Some remarks on the volume of log varieties,
Proceedings of the Edinburgh Mathematical Society, vol. 63 no. 2
(May, 2020),
pp. 314-322 [doi] [abs]
- Filipazzi, S, On a generalized canonical bundle formula and generalized adjunction,
Annali Della Scuola Normale Superiore Di Pisa Classe Di Scienze, vol. 21
(January, 2020),
pp. 1-29 [doi] [abs]
- Filipazzi, S; Moraga, J, Strong (δ, n)-Complements for Semi-Stable Morphisms,
Documenta Mathematica, vol. 25
(January, 2020),
pp. 1953-1996 [doi] [abs]
- Filipazzi, S; Svaldi, R, Invariance of Plurigenera and boundedness for Generalized Pairs,
Revista Matemática Contemporânea, vol. 47 no. 6
(2020), Springer Science and Business Media LLC [doi]
- Filipazzi, S, Boundedness of log canonical surface generalized polarized pairs,
Taiwanese Journal of Mathematics, vol. 22 no. 4
(August, 2018),
pp. 813-850 [doi] [abs]
- Filipazzi, S, Generic vanishing fails for surfaces in positive characteristic,
Bolletino Dell Unione Matematica Italiana, vol. 11 no. 2
(June, 2018),
pp. 179-189 [doi] [abs]
- Filipazzi, S; Rota, F, An example of Berglund-Hübsch mirror symmetry for a Calabi-Yau complete intersection,
Matematiche, vol. 73 no. 1
(January, 2018),
pp. 191-209 [doi] [abs]
|
|
|
|
dept@math.duke.edu
ph: 919.660.2800
fax: 919.660.2821
| |
Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320
|
|