M. George Lam, Graduate Student
Please note: M. has left the Mathematics department at Duke University; some info here might not be up to date.  Contact Info:
Office Location:  224 Physics  Office Phone:  (919)6602877  Email Address:     Starting Year: 
2005  Advisor(s): 
Hubert Bray  Thesis Title: 
The Graph Cases of the Riemannian Positive Mass and Penrose Inequalities in All Dimensions  Defense Date: 
2011/04/01  Typical Courses Taught:
 Office Hours:
 Monday 57pm Carr 132
Tuesday 34pm Physics 224
 Education:
M.A. Mathematics  Duke University  2007 
M.S.E., Applied Mathematics and Statistics  Johns Hopkins University  2005 
B.S., Applied Mathematics and Statistics  Johns Hopkins University  2005 
 Specialties:

Geometry
Mathematical Physics
 Research Interests: Differential geometry, partial differential equations, general relativity
I study curvature in general relativity under Dr Hubert Bray. Recently I have been investigating the question of defining mass in a spacetime. The mass of an entire spacetime have been studied extensively over the past few decades with many fundamentals results, two of which are the Positive Mass Theorem and the Penrose Inequality. On the other hand, the question "How much matter is in a given region of a spacetime?" is still very much an open problem. Various definitions of this so called quasilocal mass have been proposed, but none satisfies all the desirable properties one would expect in such a definition.
Besides being interesting in their own rights, such quasilocal mass functions have turned out to be important tools in understanding the geometry of spacetime. Husiken and Illamen proved the Riemannian Penrose Inequality for a single black hole via inverse mean curvature flow and the Hakwing mass, and Bray used the conformal mass to prove case with any number of black holes. More recently, Shi and Tam obtained lower bounds for the BrownYork mass and the Bartnik mass for compact three manifolds with smooth boundaries and derived sufficient conditions for the existence of horizons for a certain class of compact manifolds as a consequence. All these lead to the idea that a 'good' definition of quasilocal mass should also provide us with insights into the general structure of spacetime.
