Department of Mathematics
 Search | Help | Login | pdf version | printable version

Math @ Duke





.......................

.......................

Webpage

Mathematics Grad: Publications since January 2020

List all publications in the database.    :chronological  alphabetical  combined  bibtex listing:

An, Chen

  1. An, C, ℓ-torsion in class groups of certain families of D4-quartic fields, edited by Wood, M, Journal De Theorie Des Nombres De Bordeaux, vol. 32 no. 1 (August, 2020), pp. 1-23, Universite de Bordeaux

Liu, Zibu

  1. Li, L; Li, Y; Liu, JG; Liu, Z; Lu, J, A stochastic version of stein variational gradient descent for efficient sampling, Communications in Applied Mathematics and Computational Science, vol. 15 no. 1 (January, 2020), pp. 37-63, Mathematical Sciences Publishers [doi]  [abs]

Stubbs, Kevin

  1. Brandsen, S; Lian, M; Stubbs, KD; Rengaswamy, N; Pfister, HD, Adaptive Procedures for Discriminating Between Arbitrary Tensor-Product Quantum States, Ieee International Symposium on Information Theory Proceedings, vol. 2020-June (June, 2020), pp. 1933-1938 [doi]  [abs]
  2. Brandsen, S; Stubbs, KD; Pfister, HD, Reinforcement Learning with Neural Networks for Quantum Multiple Hypothesis Testing, Ieee International Symposium on Information Theory Proceedings, vol. 2020-June (June, 2020), pp. 1897-1902, ISBN 9781728164328 [doi]  [abs]

Wang, Lihan

  1. Jianfeng Lu and Lihan Wang, Complexity of zigzag sampling algorithm for strongly log-concave distributions (December, 2020) [arXiv: 2012.11094]
  2. Jianfeng Lu and Lihan Wang, On explicit L2-convergence rate estimate for piecewise deterministic Markov processes (July, 2020) [arxiv: 2007.14927]
  3. Yu Cao, Jianfeng Lu and Lihan wang, Complexity of randomized algorithms for underdamped Langevin dynamics (March, 2020) [2003.09906]

Wang, Zhe

  1. Lu, J; Wang, Z, The full configuration interaction quantum monte carlo method through the lens of inexact power iteration, Siam Journal on Scientific Computing, vol. 42 no. 1 (January, 2020), pp. B1-B29 [doi]  [abs]

Zhou, Mo

  1. Han, J; Lu, J; Zhou, M, Solving high-dimensional eigenvalue problems using deep neural networks: A diffusion Monte Carlo like approach, Journal of Computational Physics, vol. 423 (December, 2020) [doi]  [abs]

 

dept@math.duke.edu
ph: 919.660.2800
fax: 919.660.2821

Mathematics Department
Duke University, Box 90320
Durham, NC 27708-0320