Psychology and Neuroscience Faculty Database
Psychology and Neuroscience
Arts & Sciences
Duke University

 HOME > Arts & Sciences > pn > Faculty    Search Help Login pdf version printable version 

Publications [#349242] of Leonard E. White

search PubMed.

Papers Published

  1. Pierce, TT; Calabrese, E; White, LE; Chen, SD; Platt, SR; Provenzale, JM (2014). Segmentation of the canine corpus callosum using diffusion-tensor imaging tractography.. AJR Am J Roentgenol, 202(1), W19-W25. [doi]
    (last updated on 2024/04/24)

    Abstract:
    OBJECTIVE: We set out to determine functional white matter (WM) connections passing through the canine corpus callosum; these WM connections would be useful for subsequent studies of canine brains that serve as models for human WM pathway disease. Based on prior studies, we anticipated that the anterior corpus callosum would send projections to the anterior cerebral cortex whereas progressively posterior segments would send projections to more posterior cortex. MATERIALS AND METHODS: A postmortem canine brain was imaged using a 7-T MRI system producing 100-μm-isotropic-resolution diffusion-tensor imaging analyzed by tractography. Using regions of interest (ROIs) within cortical locations, which were confirmed by a Nissl stain that identified distinct cortical architecture, we successfully identified six important WM pathways. We also compared fractional anisotropy (FA), apparent diffusion coefficient (ADC), radial diffusivity, and axial diffusivity in tracts passing through the genu and splenium. RESULTS: Callosal fibers were organized on the basis of cortical destination (e.g., fibers from the genu project to the frontal cortex). Histologic results identified the motor cortex on the basis of cytoarchitectonic criteria that allowed placement of ROIs to discriminate between frontal and parietal lobes. We also identified cytoarchitecture typical of the orbital frontal, anterior frontal, and occipital regions and placed ROIs accordingly. FA, ADC, radial diffusivity, and axial diffusivity values were all higher in posterior corpus callosum fiber tracts. CONCLUSION: Using six cortical ROIs, we identified six major WM tracts that reflect major functional divisions of the cerebral hemispheres, and we derived quantitative values that can be used for study of canine models of human WM pathologic states.


Duke University * Arts & Sciences * Faculty * Staff * Grad * Postdocs * Reload * Login