Center for Biologically Inspired Materials and Material Systems Center for Biologically Inspired Materials and Material Systems
Pratt School of Engineering
Duke University

 HOME > pratt > CBIMMS    Search Help Login 

Publications [#348473] of Stephen L Craig

Journal Articles

  1. Lin, Y; Kouznetsova, TB; Craig, SL, A Latent Mechanoacid for Time-Stamped Mechanochromism and Chemical Signaling in Polymeric Materials., Journal of the American Chemical Society, vol. 142 no. 1 (January, 2020), pp. 99-103 [doi]
    (last updated on 2026/01/16)

    Abstract:
    Mechanically coupled proton transduction offers potential for stress-responsive polymeric materials whose properties can be switched via acid-triggered coloration, polymerization/cross-linking, or degradation. The utility of currently available mechanoacids, however, is limited by modest force-free stability or a scissile response that caps mechanoacid generation at one proton per strained polymer chain. Here, we report a new mechanoacid based on 2-methoxy-substituted gem-dichlorocyclopropane (MeO-gDCC). Pulsed ultrasonication leads to the mechanochemical ring opening of the MeO-gDCC and the subsequent elimination of either HCl or MeCl, with ∼0.58 equiv of HCl released per mechanophore activation and ∼67 protons per chain scission event. Single-molecule force spectroscopy reveals that the methoxy substituent lowers the force required for rapid (kopen ∼102 s-1) ring opening to ca. 900 pN, vs 1300 pN required for the parent gDCC. The utility of the mechanoacid is demonstrated in silicone elastomers, where its mechanical activation leads to a strain-triggered color change prior to fracture of the elastomer. The postactivation kinetics of coloration are used to demonstrate a new concept in mechanochromism, namely, a spectroscopic indicator of not only whether and where a mechanical event has occurred but when it occurred.


Duke University * Pratt * Reload * Login
x