Center for Biomolecular and Tissue Engineering Center for Biomolecular and Tissue Engineering
Pratt School of Engineering
Duke University

 HOME > pratt > CBTE    Search Help Login 

Publications [#232559] of Michael C. Fitzgerald

Journal Articles

  1. Shen, CL; Fitzgerald, MC; Murphy, RM, Effect of acid predissolution on fibril size and fibril flexibility of synthetic beta-amyloid peptide., Biophysical journal, vol. 67 no. 3 (September, 1994), pp. 1238-1246 [doi]
    (last updated on 2026/02/08)

    Abstract:
    beta-amyloid peptide (A beta) is the major protein component of senile plaques and cerebrovascular amyloid deposits in Alzheimer's patients. Several researchers have demonstrated that A beta is neurotoxic in in vitro and in vivo systems. Peptide aggregation state and/or conformation might play a significant role in determining the toxicity of the peptide. The size and flexibility of fibrils formed from the synthetic peptide beta (1-39), corresponding to the first 39 residues of A beta, were determined. Samples were prepared either directly from lyophilized peptide or diluted from a 10 mg/ml stock solution in 0.1% trifluoroacetic acid (TFA). All samples had a final peptide concentration of 0.5 mg/ml, a final pH of 7.4, and a final NaCl concentration of 0.14 M. The molecular weight and linear density of the fibrils increased with increasing pre-incubation time in TFA, based on static light scattering measurements. Analysis of the angular dependence of the intensity of scattered light indicated that the fibrils were semi-flexible chains and that the fibril flexibility decreased with increasing pre-incubation time in TFA. There was a concomitant change in phase behavior from precipitation to gelation with the decrease in fibril flexibility.


Duke University * Pratt * CBTE * Reload * Login
x