Fitzpatrick Institute for Photonics Fitzpatrick Institute for Photonics
Pratt School of Engineering
Duke University

 HOME > pratt > FIP    Search Help Login 

Publications [#66853] of Adrienne D. Stiff-Roberts

Papers Published

  1. Bhattacharya, P. and Ghosh, S. and Stiff-Roberts, A.D., Quantum dot opto-electronic devices, Annual Review of Materials Research, vol. 34 (2004), pp. 1 - 40 [annurev.matsci.34.040203.111535]
    (last updated on 2007/04/16)

    Abstract:
    Highly strained semiconductors grow epitaxially on mismatched substrates in the Stranski-Krastanow growth mode, wherein islands are formed after a few monolayers of layer-by-layer growth. Elastic relaxation on the facet edges, renormalization of the surface energy of the facets, and interaction between neighboring islands via the substrate are the driving forces for self-organized growth. The dimensions of the defect-free islands are of the order B, the de Broglie wavelength, and provide three-dimensional quantum confinement of carriers. Self-organized In(Ga)As/GaAs quantum dots, or quantum boxes, are grown bMEy molecular beam expitaxy (MBE) or metal-organic vapor phase epitaxy (MOVPE) on GaAs, InP, and other substrates and are being incorporated in microelectronic and opto-electronic devices. The use of strain to produce self-organized quantum dots has now become a well-accepted approach and is widely used in III-V semiconductors and other material systems. Much progress has been made in the area of growth, where focus has been on size control, and on optical characterization, where the goal has been the application to lasers and detectors. The unique carrier dynamics in the dots, characterized by femtosecond pump-probe spectroscopy, has led to novel device applications. This article reviews the growth and electronic properties of InGaAs quantum dots and the characteristics of interband and intersublevel lasers and detectors and modulation devices.

    Keywords:
    Optoelectronic devices;Electronic properties;Semiconducting indium gallium arsenide;Molecular beam epitaxy;Metallorganic vapor phase epitaxy;Self assembly;Crystal defects;Charge carriers;


Duke University * Pratt * Reload * Login
x