Fitzpatrick Institute for Photonics Fitzpatrick Institute for Photonics
Pratt School of Engineering
Duke University

 HOME > pratt > FIP    Search Help Login 

Publications [#342458] of Jie Liu

search www.chem.duke.edu.

Journal Articles

  1. Liu, S; Feng, J; Bian, X; Liu, J; Xu, H; An, Y, A controlled red phosphorus@Ni-P core@shell nanostructure as an ultralong cycle-life and superior high-rate anode for sodium-ion batteries, Energy and Environmental Science, vol. 10 no. 5 (January, 2017), pp. 1222-1233 [doi]
    (last updated on 2026/01/16)

    Abstract:
    Sodium-ion batteries (SIBs), a potential alternative to lithium ion batteries (LIBs), have attracted remarkable attention recently due to the natural abundance and low-cost of sodium. Here, we have presented a comprehensive study on combining electroless deposition with chemical dealloying to control the shell thickness and composition of a red phosphorus (RP)@Ni-P core@shell nanostructure as a high performance anode for SIBs. For the first time depending on regulating the dealloying time (1 h, 4 h, 8 h, 10 h and 20 h) of RP@Ni-P synthesized by electroless deposition of Ni on RP, 1 h RP@Ni-P, 4 h RP@Ni-P, 8 h RP@Ni-P, 10 h RP@Ni-P and 20 h RP@Ni-P with different shell thicknesses and compositions were prepared. The in situ generated Ni2P on RP particle surfaces can facilitate intimate contact between RP and a mechanically strong amorphous Ni-P outer shell with a high electronic conductivity, which ensures strong electrode structural integrity, a stable solid electrolyte interphase and ultra-fast electronic transport. As a result, the 8 h RP@Ni-P composite presents a super high capacity (1256.2 mA h gcomposite-1 after 200 cycles at 260 mA gcomposite-1), superior rate capability (491 mA h gcomposite-1 at 5200 mA gcomposite-1) and unprecedented ultralong cycle-life at 5000 mA gcomposite-1 for an RP-based SIB anode (409.1 mA h gcomposite-1 after 2000 cycles). This simple scalable synthesis approach will provide a new strategy for the optimization of core@shell nanostructures, paving the way for mass production of high performance electrodes for SIBs and other energy storage systems.


Duke University * Pratt * Reload * Login
x