|
| Publications [#340075] of Lawrence Carin
Papers Published
- Chapfuwa, P; Tao, C; Li, C; Page, C; Goldstein, B; Carin, L; Henao, R, Adversarial time-to-event modeling,
35th International Conference on Machine Learning, ICML 2018, vol. 2
(January, 2018),
pp. 1143-1156
(last updated on 2024/12/31)
Abstract: Modern health data science applications leverage abundant molecular and electronic health data; providing opportunities for machine learning to build statistical models to support clinical practice. Time-to-event analysis, also called survival analysis, stands as one of the most representative examples of such statistical models. We present a deep-network-based approach that leverages ad-versarial learning to address a key challenge in modern time-to-event modeling: nonparametric estimation of event-time distributions. We also introduce a principled cost function to exploit in-formation from censored events (events that occur subsequent to the observation window). Unlike most time-to-event models, we focus on the estimation of time-to-event distributions, rather than time ordering. We validate our model on both benchmark and real datasets, demonstrating that the proposed formulation yields significant performance gains relative to a parametric alternative, which we also propose.
|