|
| Publications [#348801] of Lawrence Carin
Papers Published
- Chen, L; Zhang, Y; Zhang, R; Tao, C; Gan, Z; Zhang, H; Li, B; Shen, D; Chen, C; Carin, L, Improving sequence-to-sequence learning via optimal transport,
7th International Conference on Learning Representations, ICLR 2019
(January, 2019)
(last updated on 2024/12/31)
Abstract: © 7th International Conference on Learning Representations, ICLR 2019. All Rights Reserved. Sequence-to-sequence models are commonly trained via maximum likelihood estimation (MLE). However, standard MLE training considers a word-level objective, predicting the next word given the previous ground-truth partial sentence. This procedure focuses on modeling local syntactic patterns, and may fail to capture long-range semantic structure. We present a novel solution to alleviate these issues. Our approach imposes global sequence-level guidance via new supervision based on optimal transport, enabling the overall characterization and preservation of semantic features. We further show that this method can be understood as a Wasserstein gradient flow trying to match our model to the ground truth sequence distribution. Extensive experiments are conducted to validate the utility of the proposed approach, showing consistent improvements over a wide variety of NLP tasks, including machine translation, abstractive text summarization, and image captioning.
|