|
| Publications [#349198] of Lawrence Carin
Papers Published
- Chapfuwa, P; Li, C; Mehta, N; Carin, L; Henao, R, Survival cluster analysis,
ACM CHIL 2020 - Proceedings of the 2020 ACM Conference on Health, Inference, and Learning
(February, 2020),
pp. 60-68 [doi]
(last updated on 2024/12/31)
Abstract: Conventional survival analysis approaches estimate risk scores or individualized time-to-event distributions conditioned on covariates. In practice, there is often great population-level phenotypic heterogeneity, resulting from (unknown) subpopulations with diverse risk profiles or survival distributions. As a result, there is an unmet need in survival analysis for identifying subpopulations with distinct risk profiles, while jointly accounting for accurate individualized time-to-event predictions. An approach that addresses this need is likely to improve the characterization of individual outcomes by leveraging regularities in subpopulations, thus accounting for population-level heterogeneity. In this paper, we propose a Bayesian nonparametrics approach that represents observations (subjects) in a clustered latent space, and encourages accurate time-to-event predictions and clusters (subpopulations) with distinct risk profiles. Experiments on real-world datasets show consistent improvements in predictive performance and interpretability relative to existing state-of-the-art survival analysis models.
|