Fitzpatrick Institute for Photonics Fitzpatrick Institute for Photonics
Pratt School of Engineering
Duke University

 HOME > pratt > FIP    Search Help Login 

Publications [#357703] of Michael E. Gehm

Papers Published

  1. Gong, Q; Coccarelli, D; Stoian, RI; Greenberg, J; Vera, E; Gehm, M, Rapid GPU-based simulation of x-ray transmission, scatter, and phase measurements for threat detection systems, Proceedings of SPIE - The International Society for Optical Engineering, vol. 9847 (January, 2016), ISBN 9781510600881 [doi]
    (last updated on 2024/12/31)

    Abstract:
    To support the statistical analysis of x-ray threat detection, we developed a very high-throughput x-ray modeling framework based upon GPU technologies and have created three different versions focusing on transmission, scatter, and phase. The simulation of transmission imaging is based on a deterministic photo-absorption approach. This initial transmission approach is then extended to include scatter effects that are computed via the Born approximation. For phase, we modify the transmission framework to propagate complex ray amplitudes rather than radiometric quantities. The highly-optimized NVIDIA OptiX API is used to implement the required ray-tracing in all frameworks, greatly speeding up code execution. In addition, we address volumetric modeling of objects via a hierarchical representation structure of triangle-mesh-based surface descriptions. We show that the x-ray transmission and phase images of complex 3D models can be simulated within seconds on a desktop computer, while scatter images take approximately 30-60 minutes as a result of the significantly greater computational complexity.


Duke University * Pratt * Reload * Login
x