|
| Publications [#237033] of John H. Reif
search www.cs.duke.edu.Journal articles or Book chapters PUBLISHED
- Reif, JH; Sahu, S, Autonomous programmable nanorobotic devices using DNAzymes,
Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics, vol. 4848 LNCS
(August, 2008),
pp. 66-78, Springer Berlin Heidelberg, ISSN 0302-9743 [doi]
(last updated on 2026/01/14)
Abstract: A major challenge in nanoscience is the design of synthetic molecular devices that run autonomously and are programmable. DNA-based synthetic molecular devices have the advantage of being relatively simple to design and engineer, due to the predictable secondary structure of DNA nanostructures and the well-established biochemistry used to manipulate DNA nanostructures. We present the design of a class of DNAzyme based molecular devices that are autonomous, programmable, and further require no protein enzymes. The basic principle involved is inspired by a simple but ingenious molecular device due to Mao et al [25]. Our DNAzyme based designs include (1) a finite state automata device, DNAzyme FSA that executes finite state transitions using DNAzymes, (2) extensions to it including probabilistic automata and non-deterministic automata, (3) its application as a DNAzyme router for programmable routing of nanostructures on a 2D DNA addressable lattice, and (4) a medical-related application, DNAzyme doctor that provide transduction of nucleic acid expression: it can be programmed to respond to the underexpression or overexpression of various strands of RNA, with a response by release of an RNA. © 2008 Springer-Verlag Berlin Heidelberg.
|