Fitzpatrick Institute for Photonics Fitzpatrick Institute for Photonics
Pratt School of Engineering
Duke University

 HOME > pratt > FIP    Search Help Login 

Publications [#359726] of Weitao Yang

Journal Articles

  1. Pang, H; Walker, LM; Silakov, A; Zhang, P; Yang, W; Elliott, SJ; Yokoyama, K, Mechanism of Reduction of an Aminyl Radical Intermediate in the Radical SAM GTP 3',8-Cyclase MoaA., J Am Chem Soc, vol. 143 no. 34 (September, 2021), pp. 13835-13844 [doi]
    (last updated on 2026/01/16)

    Abstract:
    The diversity of the reactions catalyzed by radical S-adenosyl-l-methionine (SAM) enzymes is achieved at least in part through the variety of mechanisms to quench their radical intermediates. In the SPASM-twitch family, the largest family of radical SAM enzymes, the radical quenching step is thought to involve an electron transfer to or from an auxiliary 4Fe-4S cluster in or adjacent to the active site. However, experimental demonstration of such functions remains limited. As a representative member of this family, MoaA has one radical SAM cluster ([4Fe-4S]RS) and one auxiliary cluster ([4Fe-4S]AUX), and catalyzes a unique 3',8-cyclization of GTP into 3',8-cyclo-7,8-dihydro-GTP (3',8-cH2GTP) in the molybdenum cofactor (Moco) biosynthesis. Here, we report a mechanistic investigation of the radical quenching step in MoaA, a chemically challenging reduction of 3',8-cyclo-GTP-N7 aminyl radical. We first determined the reduction potentials of [4Fe-4S]RS and [4Fe-4S]AUX as -510 mV and -455 mV, respectively, using a combination of protein film voltammogram (PFV) and electron paramagnetic resonance (EPR) spectroscopy. Subsequent Q-band EPR characterization of 5'-deoxyadenosine C4' radical (5'-dA-C4'•) trapped in the active site revealed isotropic exchange interaction (∼260 MHz) between 5'-dA-C4'• and [4Fe-4S]AUX1+, suggesting that [4Fe-4S]AUX is in the reduced (1+) state during the catalysis. Together with density functional theory (DFT) calculation, we propose that the aminyl radical reduction proceeds through a proton-coupled electron transfer (PCET), where [4Fe-4S]AUX serves as an electron donor and R17 residue acts as a proton donor. These results provide detailed mechanistic insights into the radical quenching step of radical SAM enzyme catalysis.


Duke University * Pratt * Reload * Login
x